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The six-dimensional geometrical treatment of gravitation based on the principle of similarity of the ba-

sic properties of substance and light is given. To the principle corresponds movement of particles only with 
the speed of light in a multidimensional space in Compton vicinity of usual three-dimensional space ( )X  
that is subspace of a multidimensional space. The total space is supposed to be six-dimensional Euclidean 
one ( )6R , as for it a simple interpretation of spin of electron and other particles is possible. From the fact 
of existence of macroscopic three-dimensional bodies it follows, that the particles are kept in a microscopic 
vicinity of the subspace X by forces ( )F  of cosmological nature. Particles are moving in 6R  in a geo-

desic satisfying Fermat's principle, from what the law of conservation of energy of a particle in 6R  fol-
lows, and the potential energy appears by the reserved energy of movement in a subspace, which is addi-
tional one to the subspace X . The geodesic passes on a pipe surface in 6R  with varying of radius and the 
speed of light along this pipe. The axis of the pipe is located in subspace X . The curvature of a trajectory 
is determined by normal component of the force F to the trajectory and the pipe. Metric coefficients with 
neglect of quantum corrections are determined by unique function of co-ordinates and, in the case of satis-

faction of Einstein's equation 000 =R , differ from respective coefficients of known spherically symmet-
ric solutions in Einstein's theory of gravitation and the relativistic theory of gravitation only in postpost-
Newtonian approximation. The found metrics is obtained as well from a hypothesis about a superposition 
of local gravitational potentials of partial infinitesimal masses composing a complete gravitational mass. 
The given treatment is the external geometry of this pipe which is not requires of use of tensor calculation 
and not supposes of curvatures of space (not space but pipe is deformed) as distinct from the metric theory 
of gravitation which can be treated as internal geometry of this pipe. 

 
Use of the global principle of simplicity [1] has resulted in six-dimensional geometrical treat-

ment of Lorentz transformations, the interval of relativity, relativistic mechanics, spin and isospin, 
intrinsic magnetic moment, the fine structure formula, the distinction between particles and antipar-
ticles, de Broglie waves, Klein – Gordon’s equation, CPT symmetry, quark model of particles com-
posed of u- and d-quarks [2,3], and the cosmic expansion [4].  

The treatment is based on the principle of similarity of the basic properties of substance and 
light, examples of that are diffraction of electrons and photoeffect. To it corresponds the assumption 
that particles of substance move with speed of light in multidimensional space. This assumption 
goes back to Einstein's statement "the nature saves on principles" and an idea of F. Klein [5-7] that 
particles move with the speed of light in multidimensional space. It also entered in the principle of 
simplicity. The first substantiation of six-dimensionality of space was given in [8], where funda-
mental physical constants are calculated. The six-dimensional treatment of gravitation is given be-
low. 

The basic property of light is that in absence of gravitation it propagates with identical speed in 
any frame of reference. Then the particles of substance should move with the same speed. It is pos-
sible only in multidimensional space if positions of particles are recording in projection on homo-
geneous and isotropic three-dimensional subspace ( )X .  If the formulas of the Newtonian mechan-
ics are referred to six-dimensional Euclidean space 6R , then in projection of events on X  these 
formulas give relativistic results. 



The total space is supposed six-dimensional ones, as only for it a simple interpretation of spin of 
electron and other particles is possible. The particles should be kept in a small vicinity of the three-
dimensional Universe by forces orthogonal to it (of a cosmological nature), differently would there 
are not any macroscopic bodies. We consider a small site of the Universe representing interest at the 
description of a field of gravitation, as Euclidean subspace X  with neglecting of curvature of the 
Universe on this site. Let us assume that for particles moving in 6R  and considered as material 
points, formulas of the Newtonian mechanics are applicable at suitable choice of time, which has 
been mentioned below, and that the positions of particles is fixed by observer in projection on X . 

The particle, which is at rest in a projection on X  in the inertial frame of reference K  of the ob-
server " at rest ", moves with speed of light с  in the simplest case in a circle in three-dimensional 
subspace Y  adding up X  until 6R , with the center of the circle in X . In any other inertial frame 
of reference this particle is moving in a helical line located on a cylindrical surface (a motion pipe) 
in 6R  with an axis in X . We assume that the proper time of a particle is proportional the number of 

its revolutions in Y  around axis of a pipe of movement. This number is proportional to |cos| θ , 
where и  is the angle of an inclination of a helical line to directrix of the pipe. If the particle makes 
one revolution per a proper time τ , then by clock of the observer "at rest", relatively which the par-
ticle moves along the pipe with a speed θsincv = , it will take place per time |cos|/ θτ=t , 
where  

     cv /sin =θ ,      ( )2/1cos cv−±=θ .     (1) 
 

In (1) and further positive sign refers to a particle revolving around an axis of a pipe in a positive 
direction, negative sign concerns to an antiparticle revolving in an opposite direction.   

The lapses of proper time of a particle (or antiparticle) τd  and of time of the observer at rest dt  
are connected by a ratio  

=±= θτ cos/ddt ( ) ./1 2cvd −τ           (2)       
 
In the frame of reference at rest K  the particle has a component of speed on directrix equal to 
θcos⋅c . According to (2), the proper time of a particle from the point of view of the observer at 

rest is proportional to θcos  as well, so that the particle in the proper frame of reference K ′  
moves with speed c also.   

The displacement of a particle on an interval ds  on the directrix of a motion pipe and respective 
turn on the central angle around of the axis of the pipe, where a  is radius of the pipe, are identical 
in any frame of reference. Having designated through dx  in system K a projection of a displace-
ment ςd  of a particle on the surface of the pipe on its generatrix and having applied the Pi-

thagorian theorem, one obtains ( ) 222 dxcdtds −= . If to consider this ratio as initial one, then 
from it follows cdtd =ς , i.e. that the particle moves in 6R with the speed c .  

The particle at rest in X  is moving in Y  with speed c  and consequently has a rest momentum 

mcpy =  and rest energy 
2mccpE y =⋅= . 

By virtue of a principle of similarity of the basic properties of substance and light being a con-

crete definition of a principle of simplicity, the rest energy 2mc  should also be equal to νh , 
where н  is the frequency of revolution of a particle around an axis of a motion pipe. From here a 



radius of the pipe equal to =a mc , and the length of directrix equal to the Compton length that 
corresponds to the period h of the coordinate of action in the 5-optics [7].  

In a field of gravitation the radius a  of the motion pipe and speed ςc  of moving over pipe de-
pend on coordinates of subspace X , i. e. from a position of a particle concerning massive bodies. 

Thus metric coefficients in expression for 2ds  are dependent on a form of functions a  and ςc . 

The connection between a , ςc  and θ  is imposed by a condition, what the particle moves over the 

pipe in a geodesic according to Fermat's principle. By definition dt/dc ςς = , where тd  is a tra-

jectory segment, which the particle passes over pipe in a time dt  by clock of a distant observer. 
Father, ςc  and a  are supposed not depending from the angle θ . Let's show that along a geodesic 
onto the pipe 

     ( ) .cos constca =θς                                                   (3) 

At constc =ς  the geodesic is describing by Clairaut's law consta =θcos  [9], and at 
consta = by Snell's law. In a general case 

            =
ς
θ

d
d

ς
θ

ς
θ ς

ς d
dc

cd
da

a ∂
∂

+
∂
∂

.                                   (4)   

From Clairaut’s and Snell’s laws, by differentiation, one finds 
aa
1

=
∂
∂θ θcot , 

ςς

θ
cc
1

−=
∂
∂

θcot , 

respectively. Inserting these expressions into (4) results in =
ς
θ

d
d

θcot ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ς

ς

ς c
a

d
d

a
c

, which on in-

tegration gives equation (3).  
 The given treatment of gravitation turns out by external geometry of a motion pipe of a particle, 

while the metric theory of gravitation by internal geometry of the motion pipe. 
It should be noted that in each normal cross-section of a motion pipe all radial directions, being 

orthogonal to the subspace X , are equal in rights even in a case of curved pipe axis. Hence the 
metrics on a pipe surface does not depend on polar angular coordinate in any normal section, and 
the internal geometry [9] on a pipe surface is the same as on a respective surface of rotation in 
three-dimensional space. 

The projection of speed ςc  on tangent to a meridian is equal θςς sincv = . The coordinate 
speed v  of the particle registered by the removed observer equals 
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where ξ  and у  are lengths of arches along a meridian and axis of the pipe, respectively, в  is an 
angle  between a∇  and  tangent to an axis. Co-ordinate speed of light one obtains by means of 
tending in (5) θ  to 2/π : 

ςς ξσ cddcck == ( )[ ] 2/12cos1
−

⋅∇+ βa          (6) 

On a displacement through distance ςd  on the pipe a particle rotates about pipe axis through the 

angle add ηα =  where ςθη dd cos=  is projection of this displacement on the directrix of 

the pipe. The angle αd  is the same for any observer, i.e. is invariant, as number of revolutions 



around of the axis of the pipe is identical for any observer. The quantity αdads ∞= , where ∞a  is 
the radius of the pipe at infinite distance from the center of gravitation, also is invariant. It is an in-

terval of the metric theory of gravitation. Under Pithagorian theorem one has 222 ξςη ddd −= . 

Substituting here ςd dtcς= , multiplying both parts of the equality on ( )2aa∞  and taking into 

account that add ηα = , one can find                           
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This with account of (6) it is possible rewrite as   

( ) ( )[ ]222 σγγ dcccdtds k−= ,    (8) 

 where c is the limiting value of the speed ςc  on infinity,  

 ( )2caac ∞= ςγ  .        (9)   

It follows from (8) that the proper time τ  of a particle is connected with time t  of an observer re-
moved at infinity, by the relation 

    γτ =dtd ,       (10)  

and the elements of spatial distances dl  and σd , relatively for local and distant observers, by the 
relation 

( ) σγ dccdl k= ,        (11) 
and for the local observer  

       ( ) 222 dlcdds −= τ .                 (12) 
 

The relations (10) and (11) can be obtained as well so. For the local observer the radius of pipe 
a   (or equal to it the Compton length aπ2 , which can be measured) stands duty as a scale of 
length. As a result the lengths are measuring along the meridian, and consequently 
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Whence taking into account a designation (9), one obtains the relation (11). A period of revolution 
in Y  of a particle situated near this observer stands duty as a scale of time for the local observer. 

This period is proportional to acς , whence formula (10) follows. The speed locv  of a particle 
for the local observer according to  (9), (10) and (13) is equal to 
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=== ∞∞ . By this 

     θςς sin=== cvcvcv lock .                            (14) 
Whence it is seen that upper limit of local speed for the local observer (at 1sin →θ ) is equal to 
speed of light at infinity. The formulas (3) and (10) in view of a designation (9) can be presented as  

                ( )γ1 .,cos const=θ   ( )τddt .cos const=θ              (15) 
The relations (14) and (15) allow to express speed of a particle through γ : 
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where zero in the index marks the values at the initial moment of time.  
As the proper time of a particle is measured by number of its revolutions around an axis of a mo-

tion pipe, the difference of clock- readings in the end and in the beginning of a journey of an arbi-
trarily moving observer is proportional to the integral from the interval. In fact, (12) can be repre-
sented according to (14) as 

( ) ( )[ ]=−= 222 1 cvcdds locτ ( ) ( )22cos ττθ ′=⋅ cdcd , where τθτ dd ⋅=′ cos   is an in-

creasing in the proper time for this observer. Whence integrating τ ′= cdds along the trajectory 

between points A  and B , one finds ∫=′−′
B

AAB ds
c
1ττ .    

For the local observer, the acceleration of a particle is equal to τddvloc . Taking into account 

(16), one finds ==
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gravity force for the local observer will be 
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= , where ||dl  is an element of spatial dis-

tance in the direction of gradient of function γ  from the point of view of the local observer. Intro-

ducing a gravitational potential locΦ  by equality ||dldg locloc Φ=  and integrating, one finds 
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The formula (17) describes a slow down of time in a field of gravitation. Elimination of γ  be-
tween (15) and (17) and tacking into account (14) one gets that along a geodesic 

    ( )[ ]21 cvΛ− ( )[ ] .2exp 2 constc =ΦΛ      (18) 
In the domain of weak fields the formulas (17) and (18) are reduced to forms 

( )21 cdtd ΛΦ+=τ , ( ) .22 constv =Φ− ΛΛ Last formula expresses the law of conservation of 
energy in the mechanics of Newton. Similarly we shall find magnitude of acceleration from the 

point of view of the removed observer: β
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where 
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2
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2 σ
γ

γ d
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g =  is the acceleration of force of gravity, ||σdd  means differentiation in a di-

rection of a gradient of γ , ||c  is value of kc  in this direction.  

 The particle at rest in X  revolves in Y  with frequency ( )ac πν ς 20 = , having energy at 

rest === achE ςν 00 γγ 2cmac ∞∞ = . For a moving particle the total energy will be 

equal to |cos|0 θEE = . The Lagrangian’s formalism yields also the same results. 



The action S  is determined within accuracy up to a constant factor as integral from a scalar. 
Scalar here is the angle of turn of a particle around of an axis of motion pipe. A constant multiplier 

one chooses by such, that in absence of gravitation Lagrange function to be иmcL cos2−= , as 

in the relativistic mechanics. Then one has ∫−= 2
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total momentum of a particle ςcLp ∂∂=  becomes ( )θς cos⋅== acEp . From here and  

(15) it is seen that at moving along a geodesic .constE = Thus occurs only flow of energy of 
movement from the latent form in subspace Y  into the evident form in subspace X  or on the con-
trary. The potential energy is the reserved energy of motion in extra dimension space Y . 

In absence of gravitation a particle at rest in X  revolves in Y  along a circumference of radius 

∞a with speed of light c .  Appropriate to such revolution centripetal force is equal to 

=== ∞∞
2acacpF y ∞∞ acm 2 , in agc2  times exceeding weight of the particle at the ter-

restrial surface, in 281038.2 ⋅  times for electron. This force may have only cosmological nature. 
The same result turns out and at movement of a particle on a helical line: θcospcKF = , where 

∞= aK θ2cos  is the curvature of helical line. From this it is seen that 2acF ∞=  at any θ .  
In a field of gravitation the angle of an inclination of a meridian to pipe axis is determined by re-

lations: ξχ dda=sin , ( ) =−= 21cos ξχ dda ( )211 σdda+  χtan σdda= . A com-
ponent of the cosmological force perpendicular to the geodesic, in the osculating plane, is equal to 
the centripetal force proportional to the curvature K  of a trajectory: 
   χθς coscos FKpc = ,                                                            (19)  

where ( )22 σ ′′+= ⊥KK ,   ( ) ( )22
2

1
2 yyK ′′+′′=⊥ ;  1y  and 2y  are coordinates of the particle in 

two mutually perpendicular directions in a section of the pipe, the prime means derivative along a 
trajectory. It is possible to write these coordinates as αcos1 ⋅= ay , αsin2 ⋅= ay . Then, tak-
ing into account that ςθα dadds cos== , ςθξ dd sin= , (15) and θχσ sincos=′ , one finds:  

      ( ) ( ) =′′+′′+′′−′=⊥
2222 2 ααα aaaaK +⎥

⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

2

0

0
2

0

0
2 coscos1

ξ
γ

ξ
γ

γ
θ

γ
θγ

d
da

ad
d

 

        

2

2

2

0

0
2

0

0
2 cos1cos

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

ξγ
θγ

ξξ
γγ

γ
γ
θ

d
ad

d
da

d
d

a ,                         (20)  



2

2

0

0
2

0

0
2 cos1

cos
1

2
coscos

ξξ
γ

γ
θ

χξ
γ

γ
θχσ

d
ad

d
da

d
d

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=′′ . Substituting the found expressions for 

p  and F  in (19) yields: =∞ θγ 2cosKa χcos . Whence and from (20) to an accuracy of 

( )[ ]2222 ξγξγ dddda +∞  one obtains 1≈∞ aaγ . Thus on the basis of  (9) one has:  

                                 γ=∞aa ,    γς == ⊥ cccc ,               (21)  

where ⊥c  is the speed of light in a direction, perpendicular to the gradient of the field.  

    The formulae (21) are follow as well from the equality FaE =0 .It means that an increase of the 

rest energy is equal to the work against the cosmological force: FdadE =0 . 
In the metric theory of gravitation, it is considered that the field of gravitation is generated only 

by massive bodies and is accompanied by decrease of speed of light and by a slowing down of 
proper time in vicinity of massive bodies.  In six-dimensional treatment of gravitation, massive bod-
ies themselves gravitation does not create, they only decrease speed of light in bodies' vicinities. It 
results in reduction of radius of an orbit of movement in Y  at preservation of equality of values of 
centrifugal force and cosmological one. But then a motion pipe of a particle is not a cylindrical sur-
face, its meridians have an inclination to the pipe axis, therefore the projection of cosmological 
force onto a meridian becomes distinct from zero. This projection both represents the force of gravi-
tation and is equal to =−= χξ sinFF  ( ) ξddaac 2

∞− , whence in approximation (21) 

( ) =−= ∞ ξγξ ddacF ξγ ddmc 2− .                                (22) 

In spherically symmetric field the asymptotic decomposition of γ  into a power series in r1 , 
where r  is the radial co-ordinate (distance from the centre of gravitation from the point of view of 
the distant observer), has a form  

   ( ) ( ) ( ) +++−= 3
3

2
21 rrbrrbrr gggγ ,          (23)        

where 22 cGMrg =  represents gravitational radius, G  gravitational constant, M mass of an at-
tractive body. 

In (23) coefficient at the first power, as well as in the metric theory of gravitation, is chosen 
equal 1− , in order, far away from the center of gravitation, gravitational potential was Newtonian 
one [10,11].  Substituting (23) in (22) yields  
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The gravitation has the same effect onto rays of light how appropriate anisotropic medium, and 
the speed of light is described by the formula for ray velocity [13]: 
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where в  is an angle between a direction of propagation of light and gradient of a field. Denoting 
projections of an element σd  of a trajectory in X onto the direction of gradient of a field and onto 
perpendicular to it direction through ||dσ  and ⊥σd , respectively, and substituting (24) in (8), one 
obtains  
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Whence in neglect by the quantum corrections under conditions (21) one finds  

 ( ) ( ) ( ) 22
||

22 11 ⊥−−= σγσγγ ddcdtds .     (25) 
The metric (25) is described only by one function of co-ordinates − functionγ . The centrifugal 
force θςξ cosRvp , where R is the radius of curvature of a trajectory in X , is counterbalanced 

by component of force of gravity βξ sinF− . From here one obtains  

 ( )( ) βξγγθ sintan 2 ddR= .                                          (26) 

The Lagrange function ( ) ( )22
|| crcr1L ⊥−−−= ϕ  in polar co-ordinates r , ϕ  does 

not depend explicitly on ϕ , so that .constL =∂∂ ϕ , whence one obtains the law of conservation 

of angular momentum ( ) .sin2 constrvcc =⊥ β  Substituting (21) yields 
( ) .sinsin constrv =βθγ By means of this formula with due account of (15) it is possible to 

eliminate βsin or θsin in (26). 
For introduction of coordinates with reference to (25) we may use an Einstein's equation for 

components of the Riccian tensor. In vacuum, this is 0=00R . In spherically symmetric field, this 

equation for )exp(νγ = is reduced to ( ) 02 =′+′′ rνν  [10]. Its solution, satisfying the asymp-
totics (23), has a form rrg−=ν , 212 =b . By this the metrics (25) in spherically symmetric 
field coincides in the post-Newtonian approximation with Shwarzshild's metrics in isotropic coordi-
nates [10,11] and with the metrics of the relativistic theory of gravitation [13], but differs from both 
these metrics in the next approximation. This solution is obtained as well from a hypothesis, that the 
superposition of partial fields jν  (i.e. of gravitational potentials) takes place for any components 

jM of the total mass M , including infinitesimal ones, so that ∑= j jνν . Really, for 

nMM j =  ( )nrr ggj =  one has rrgjj −=ν , ∞→= nlimν ( )=jnν rrg− . Given su-
perposition corresponds to the principle of simplicity also and at any spatial distribution of masses. 
Anyway, for such static distribution of masses the replacement of exponential function 

( )[ ]∑− j jgj rrexp  by the first three terms of its power series expansion gives the metrics coinci-

dent with post-Newtonian metrics given in [11]. 
It is essential, that as distinct from others of multidimensional theories of gravitation, in the 

given approach based on the principle of simplicity, a compactification of space of extra dimensions 
is not a necessary. It is replaced here by presence of the cosmological force, confining particles in 
Compton vicinity of three-dimensional subspace ( )X . Here are compactificated not extra dimen-
sions, but trajectories of elementary particles in space of extra dimensions. Existence of this force is 
not postulated. It follows from the principle of simplicity (specifically, from the principle of similar-
ity of the basic properties of substance and light, according to which νhmc =2 ; the value of 

force is equal to
32 cmacp y =∞ ) and from fact of existence of three-dimensional bodies. If 

such force would not exist, the particles would not be kept in a vicinity of three-dimensional sub-
space. Then for an explanation of existence of three-dimensional bodies it should with necessity 



involve a compactification of space of extra dimensions, despite of the problem of an explanation of 
its occurrence. The problem of compactification in multidimensional theories of gravitation arises 
because of impossibility of an explanation of existence of three-dimensional bodies in multidimen-
sional space, without the consideration of mechanism of confining of particles in a small vicinity of 
three-dimensional subspace. In the given approach this problem does not arise. 
                The author thanks Prof. M. E. Herzenstein for useful discussion. 
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