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Abstract The exact solution of the problem of the vacuum polarisation and tunnd trangitions of an eectron
out of the potentid well under the influence of an eectric field is obtained. The concluson drawn earlier
concerning the existence of the intense vacuum polarisation mechanism by the externd fidd, for which the
number of eectronpodtron pars created in the fied is proportiond to the energy levels width of
elementary eectronpositron excitations, is confirmed. The estimates of the pair creetion probability alow
usto think that the atom ionisation in a steedy dectric field is accompanied by crestion of €ectron-positron
pairs which can be quite well registered experimentdly at the relatively wesk fidds. It is shown that at the
sudden switching on of an eectric field, the vaue of the tunnd current of eectron emisson out of thewdl is
affected appreciably by alowance for the positron band.

1. Introduction

In this paper the non-dationary problem of the vacuum polarisation and tunnd trangtions out of the
potentia well under the influence of an dectric fidd & switched on instantaneoudy a some moment of time
is conddered. The tunnel current occurring both in the one-éelectron state which corresponds to the bound
electron gate in the potential well before switching on the field ¢ and in the vacuum dtate is calculated.

The dectron tunnelling out of the potertid well and the creetion of eectron-positron pairs are due
to the decay of quasistationary states being formed in an eectric fidld. When considering these phenomena
we use the Drukarjev's method ( Drukarjev 1951 ), which offers the most rigorous and consistent way of
describing the decay processes.

Asis seen from a comparison of the results obtained and the nontrdatividtic tunnding theory results
(Olenik and Arepjev 1983 ), when consdering the dectron tunndling out of the well in the case of sudden
switching on of an dectric field it isimportant to take into congderation the positron band which markedly

" The main ideas of the present paper are briefly outlined in Oleinik and Belousov ( 1983)



affects the value of tunnd current. For the one-levd wdl the maximum vaue of tunnd current is
congderably larger than that in the non-rdativigtic theory.

The exact solution of the vacuum polarisation problem given in the paper confirms the conclusion
drawn earlier ( Oleinik 1981 ) concerning the existence of the par creation mechanism for which the
number of pars created in an external fidd is proportiond to the energy levd width of dementary
excitations of the eectron-postron fied. According to numerical edtimates presented, the vacuum
polarisation due to the appearance and decay of quas-dationary states is congderably stronger than that
caused by the steady and uniform eectric field in the absence of the potential well ( Schwinger 1951 ).

In § 2 the genera formulae for the eectron current dendity in one-electron and vacuum states are
given. In 8 3 the correction to the energy and the width G of the quas-dationary eectron levd in the well
are caculated. The formula for the electric current of eectron-positron pairs created in an dectric fidd is
derived. The cdculation of the eectron tunnd current out of the well is given in 8§ 4. The formulae for the
wavefunctions of ardativigic eectron in the wdl and in an eectric field are presented in the appendix.

2. General formulae for the electric current density
Let us consider the eectron-pogitron in the potentid well
Vo(2) = - Voa(z+ L)a(- 2), V, >0 (1)

where V, and L are the depth and the width of the well. The eectron-positron field operator of the

system in the Schrodinger picture may be presented in the form ( for amplicity, we confine oursalves to
investigating the one-dimensiona modd ):
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In this expression j &) (z) and | {)(2) are the solution of the Dirac equetion in the field (1) (see

gppendices ); the dgns ‘+ and ‘-* correspond to the electron and poditron states, respectively; the

functions j &) and j &) describe the continuous spectra states and the bound states of electron in the

well, respectively; p, and s are the energy and the spin quantum number, n(n = il) is the quantum
number characterisng the doubly degenerate states with the fixed valuesof p, ad s ; n isthe quantum

number pertaining to the discrete electron levels with the energy p,, inthewdl; a b ad a



the second quantisation operators for the fermi-particles obeying the ordinary anticommutation reations

and equdities a |0y =b . |0) =a . |0) = 0 (|0} isthe vacuum ket-vector ).

Posn posn

Let us suppose that a the moment of time t =0 intherang z> 0 thedectric fidd with intengty
¢ isswitched on Thetotd potentid energy of the system is given by

V(z.t)=V,(2)- eez(2aft) (&¢>0) 3
The dectronpoditron fidld operator in the eectric fidd is now written as follows
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Here y %) (zt) and y $)(zt) arethe Dirac eguation solutionsin the field with the potential energy (3)
stidying theinitid conditions
y 8.(20)=j &), (2), y D(z0)=j (2 (5)
The dectric current density in the vacuum state |0) and in the state a;S| O) , corresponding to the
bound eectron gate in the well is defined by the formulae

j.(zt)=¢0

Y *(zt)a,Y(zt)0)

i (zt)=¢0la, Y (zt)a,Y(zt)a,

0), a,° 9,0, (6)

Subdtituting the field operator expresson (4) into (6) we arrive a the following relationships.

jv(z’t) = eé. C‘}jpo [y E;O)sn(z’t)]+ azy (p_o)sn (Z’t)

sn _y
i (2)= 1(20) +ely D(zt)] 2y D(z1) (7)

With the aid of the formulae in the gppendices one can easly prove the equdities
[ (@) i 6 (2)=-nl2pp®)” @®

| 9(]'a, D(z)=0
It is seen from (7) and (8), that
jV(Z’t): jns (Z't):O a t£0 (9)



The quantities j, and have the following physcd meaning: |, is the dectric current dengty

Jns

produced by eectron-postron pairs created under the influence of the eectric field, Is the tunnel

jns
current dendity (the emission current) out of the potentia well.
According to (7) the cdculation of the eectron current dendty reduces to evaudaing the

wavefuncions y ) (z,t) ad y ) (zt). We expand these functions in terms of the exact solutions of

the Dirac equation in thefield

V(2) =V (2)- & zo(2) (10)
(see appendices). The expansions mentioned above are of theform (a t 3 0)
Y o (2) = Conge ™ A Ayl posn)f . d2), (11)
-m s¢
y 2 (z2t)= ginge ™ A alns)f 5.2 (12)
-m s¢

where a g (p,sn) and a(ns) are the congant coefficients defined by the initial conditions (5), the
functions f . ¢(z) being determined by the formulae (A2.2). In the expansions (11)-(12) we have retained
only the eigenfunctions f . (z) with the energy  pg1 (- m, m).Allowance for the eigenfunctions with

energies lying outsde the above mentioned interva would dlow one can to caculate the wavefunction part
which describes the spreading out of the wavepacket in time (Drukarjev 1951, Oleinik and Arepjev 1983);
in this paper, however, we shdl not be interested in the spreading out of the wavepacket in time. In this
case the main contribution to the dectric current density comes from the poles of integrands in (11)-(12)

which occur only & Re pg1 (- mm).

3. Electron-positron pair creation
Let us consder the wavefunction y (F;@)Sn (z,t). The expanson coefficients (11) are expressed by the

formulae
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Making use of the formulae in the appendices for the wavefunctions f . and j &) the coefficients (13)

psn

may be transformed into the form
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where the following notation is used
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2 b 0 ?j 5 -1 26t | | d

9 =b) gt
2
ht=e"* _———(pg+e,€2),
¥ —gzb1)+b( ),

Teking into account the equdities (14) and (A2.2) the wavefunction, y (F;O)Sn may be written as

folows (at z>0):

Y o (2t) = - (20) *d & cipgexp(- ipgt)pg- p,)"”

et (o8, po) +cELE) (08, po) |+ 1L b8 by )+ L (08 o )}
,é1 xdp aed o) U
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wheretheprime ( ¢) meansthat in the corresponding quantity one ought to replace p, by pg
Hoo=pg ).

The integrand polesin (17) coincide with zeros of the functions ¢¢ and cg . Taking into account

(A2.3), we represent the equdities ¢ =0 (n =1,2) intheform

210 (=) (18
a,-a V, - l1a,
—_ ’Ip/4 «w d y H
where a =-e" [2e¢6—Inw, (ih,)
dh,
a,=-e"* [2e¢ dﬂ nv_, (h,) (19)

0

We confine oursalves to investigating the wesk dectric fidd, for which the condition



| >>1 (20)
isfulfilled. In addition to (20) we shdl henceforth assume that

| >>1- 2> VAR el B0 po/if2e (21)

Assuming the inequdities (20)-(21) to be satisfied, we turn to computing the asymptotic formulae
for thefunctions ¥, (h,) ad 9, , (ih,). These functions satisfy the equation

2- 2 s
d_‘2+§&y_- by =0 22)
dy 4 g

where y=2p,,b=1 +i/2. According to Abramowitz and Stegun (1964) the linearly independent

solutions of (22) are of the form

I é ~ ~ vy
~ 1 I @ Po Po ds 0
J (pO)_W=7~ expi+&- W=j~ - barcsn —= + ,
4 b_ pg f g b- p02 _\/— (b- '52) %
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The formulae (23) may be derived by the WKB method. We represent the functions % _,, (h,,)
and 9, ,(ih,) intheform of linear combinations of the functions | “); in particular

9., (he)=a, Y(p,)+a, V(,) (24)

where the constants a,(n=1,2) may be defined by using the known expression for the parabolic

cylinder functionsat p, ® 0 . A smple caculation leads to the following formulae

o 4l +i/2
a, :ﬁe'pl 2'”/2.—/__; a,= Zal(epI ) %) (25)
2 EL 10
&2 2g

Making use of the presented relationships and retaining throughout only the largest terms, we obtain

Then with the aid of the equdlities (23) we find:
a, =k, +Da,
2
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€, : : = 4 (I -p ) :
Da, = - — - ik,) ik, exp& = o/ u 26
a, 2kf(|o0 )ik, e =St (26)
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The subgtitution of (26) into (18) gives
G(p,)° (K2 - k2 - VZ)snk,L - 2k,k, cosk,L =

= (Da, ) [k, cosk,L +(k, - iV, )dnk,L] (27)

If an dectric field is absent the last equaity goes over into the disperson equation G( ) 0 (A18)
defining the energy levels of the bound eectron sates in the well. Dencting the roots of the equation (27)

by p, =p®+Dp, -iG*, where p{*) arethe roots of the dispersion equation (A1.8), we obtain the

following equation for defining the quantities Dp,, and G*:

dG (s « . .

(pO) (DpOn - |Gr$‘)) = (Dai ) [kz COSkzL + (kl - 'Vo)sn kz L]p =plo) (28)

dpo pong?]) 0= Pon

From (28) we get
@ 2 21

DpOn =- liék_z?—"'ikll- Po +V0 g (29)
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GFS_): pOYI 1+ —k [——9 =
4mv,(p, +V, /2 PotVo/25 |

The quantites Dp,, axd G represent the shift and the width of energy level of a quas-

dtationary state gppeared in the eectric field. In order to compare these quantities and the anal ogous ones (
DE, and G ) of the nonrddividic theory (Oleinik and Arepjev 1983), we pass to the non-redivistic

energy reading by putting,
p, =m-V, +E (30)
Then k, =2m\V, - E), k, = +/2mE
- ~2 3 _~
(l |po) =22 v, - E) 0 52 (31)
e

Using the last formulae and retaining only the largest terms, we obtain (in the ordinary system of units)

2E®  hey

m(Vo - E) 8\/0 (32)

DpOn =-
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0

The quartities Dp, and G coincide exactly with the non-rdativisicones( DE, and G ).

At t- z>0 theintegration pah in (17) may be closed in the lower haf-plane of the complex
varisble pg. Taking into account thet it is only the function (c¢ )" that hes singularitiesin the lower half-

planeof pg andretaining in (17) only the Sngular terms, we obtain

.cf.
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[FOL (8 po) + 1L (g po)usF =2, (ny
e dzg g
where the symbol Ej:e s meansthe resdue in the pole defined by the formula
p,, = ps) +Dp,, - iGY
For convenience, we represent the expression (33) in the form
i d
Y §20(28) =& 9o (po)e ™'u sné?—zgﬁ (h.) (34)
gnn(po):_idnepl/z'\/l—ei(I lnl_l_p/4)(p0n_ pO)-l(1+%klnL)-l,
Xaka [ Lo Py Jepl- 22,
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0
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ed ('j edo
— ,(h,)=u,ci—2_, (h ; h =hl _
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In deriving the relaionships (34)- (35) we have used the equdity

Resi:_ﬁei(l Inl -1 -p/4) klznkgn exp(. Zzn)
e G 2m2V0 1+%k1nL

Let us cdculate the éectric current dengty in the state (34) kegping only one term in the sum over

6L ey bl = amie g, (p) e 4 (36)



Here the equality

G SR P R

is taken into account.

Further cdculation of the vacuum current dengty reduces to the caculation of the coefficients
LY(pg p, ), defined by (15). With the aid of the asymptotic formulae (23) and (24) we obtain the

following representation:

(I +4i)" & P+ I?1 0
(pg p E(e|p/4 -l f2 2 0 :l (37)
)7 i >
where
¥ A Pg, )
I, = c‘yjzﬁe(pg 2 3ax(l - x +3i ) Fik,zq (39)
0 (I - pOZ) € o s
Bg, = (pg+ ey 2)(2e5¢) ¥, K, = k,(2e¢) *

The integration in (38) by parts using the equaity

édGc(u’
eG(Z)dz:eh( )u dec®
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where

7, "
G(2)=-2al - ¥ +1if” Tik,z

0
yidds

& P
y zexpG( ) L expg Zgjx(l - x*+1 |)'/ u

c‘pl('-p?)” 29?’(-*)[(|-p§)” |k1J

Taking into congderaion the equdities (37)-(39) we arive a the following representation for the

(39)

coefficients L (pg p, ) :

. 1 [p o 2 P, +I?19
LY)(pg: p,) = <. [Rew o2 n G2 1+ 11l )
(g py) 5 gl s

Y exp|2

21 - )| ©
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With the aid of relationships (35), (360 and (40) we find
° &yt aytl =

1 mki @ k G k, ©
RS §p0n+|p0|g§po 0

e 21+ 1k, L)?"

’ exp[— 2G"(t - z)] (41)

) +r QW)

n=+1

Here the following notation is used: Qn(*) ° Q(*)(pw, po)

Q“)(pg, p,) =i§i¢ %

&LIO:

gi kl
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Making use of the equdities (16), (A1.12) and (A1.13), one can readily derive the formula

2l QL) +1 (IQH)?

n=x1

Ipo+k
8mk
P 1

(po B k1)2
m2

1Ty e ."
[0 b0 + c-c-f; (42)

QY
b b

The quantity j,  decreasesas p,°a p; >>m’.

Let us confine oursalves to the non-relativistic vaues of the quantity p, :

p,|-m° DEV, - E,

In this case the expression in curly bracketsin (42) dightly dependson p, and equas unity in the order of

magnitude. To obtain  the numericd edimate, we replace this expresson by unity. After some
amplifications we obtain:

A
_1®E, 0dpy- OZEEV B 2 etnle1k, L) 2epl 260 - 2) (43)
8|V0g Vo- B g |po Pon @

According to (43) the dependence of the quantity j,  onthefield isof thefornt
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» () G

The appearance of the factor exp[ 2G ] in (43) dlows one to interpret the quantity
j,.dp, inthefdlowing way. This quantity isaflux of electrons cregted in pairs together with positronsiin

the wdl under the influence of an dectric fidd & and moving away from the barrier in the direction
z® +¥ a the veodty of light, the energy of postrons formed in the fidd lying in the range

-m

(- p,.- p, - dp, ). It is obvious that the quantity - e, (j,,dp, ® Q a t- 23 0, z® +¥ isthetotd
-¥

electric charge of electrons created per unit timein the field under consideration. The peculiar fegture of the
given modd conggtsin the fact thet intherange z® - ¥ the positron flux does not occur; the total eectric

charge of postronsequal to - Q isconcentrated near the boundary z = - L of the potentia well.

Let us estimate the quantity

jVn ° ijojpon ’

m+D

assuming that the condition D <<V, - E_ issatisfied. We may approximately put:

a8, - mo2 2V, - E - 2
dp »2D%(V, - E,
(mc+)D) ’ V En ﬂ §| po pOn ﬂ : ( )

Edtimate the vacuum current for the following vaues of parameters of the problem
€ =5x0°v/cm, V, =1lev, E.N, =1+, DV, - E, =1+ (44)
Write out some auxiliary quantities

bV, /e =0.2X0 " °cm; | =m?c®/2ne,& = 1.3%10°;

| - Pz, =0.340%; 2z, =48
Putting additiondly k,L » 1, we obtain
jy, » 10 Yeect (45)

It should be emphasised that the pair creation probability in dectric field in the presence of the potentid
well is by no means exponentialy small. Remember that according to Schwinger (Schwinger 1951) the pair



creation probability in an dectric field in the absence of the well is proportiond to the exponent e 2"

which equds exp(- 8><109) for the chosen parameters (44). Compare this quantity with the exponent
exp(— ZZn) involved in (43): for the same parameters the latter exponent is equal to exp(- 48) !

4. Electron emission
Now we turn to caculaing the tunnel current of eectron emission defined by the wavefunction y E;) (z,t)

(12). The coeffidient a, (ns) in (12) is expressed by

e ) = 5 (a2 1)

Using the formulae in the gppendix we obtain the following representation
— [~ ~ -1,
apw(ns) =- 2m2dp&dn(aln + a_m)(p9- pc()(;))

"l (o)L .(pg. PQ)+ ¢ (POL, (P8 PO ), (46)

¥ .
L (pg. p9) = e, 109+ (59 - iR, Je™ 9, , (indlee
0

¥
L, (pg. o) = eyl 0+ (B - iR, )2 €5, (nfze (47
0
0 = _Po k n_2 )
where Py =20 K, =——L ,  ht=e"™ ——=(p$+eiz
° A 26E " NPIXG 0 264

The formulae (46) and (47) are analogous to ( 14 ) and (15). Asis seen from (47) and (15) the coefficient

L, (pg p®) may be obtained by the substitution ik, ® -k,,, p, ® p® mede in the formula for

L“(pg p,).
Usng the formulae presented above and performing the calculaions in the same way as in the
preceding section, we obtain the following expression for the wavefunction(at t- z, z3 0)

y f;)(z,t)z é gm(n)e_ipmt sm(?d O (hm); hsz=h
m ﬂ

Or(n)=-id, (&, +a_,, )*VI eqli(l In1 - 1 - p/a]]
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yk%Gﬁ

TZ\/O L 2 ( Pom » p(()?l))e(p(' sz) (48)

’ (pOﬁ- pé(r)‘l))-l(l-i-%klﬁl‘

Cdculate the éectron current dengity in the Sate y S;) (z,t) keeping only one term in the sum over
m in (48)

o © L’ g)]+azy () = omPe PP g () e 2 -7 (49)
Further, take into account the equality
|51+a-1|2 =gt (at p, = p[Jn )

and make use of the formula for the normaisation constant an ( see appendices ) and for the function

LY (pg p,) (40). Thefind reitis:

2
E, &E, 0V, - E; 0
e magt o o i [k, L)t

(50)

exp[- 26t~ 2)

Consider the case of the one-leve potentid wel. Assuming m = n and usng formula (34) for the

energy leve shift, we arrive at the following expresson for the tunnd current

Voo Bofryap, L) e

. )
k) g Sl - B ) g=2d) &)

=2E,

Jn

t-z=0

For the chosen values of parameters (44), we obtain
j, »4x10%s™

Note that expresson (51) coincides exactly with the formula for tunnel current derived within the
gationary non-relativistic theory, which corresponds to the adiabatic switching on of an eectric fidd. At the
same time the tunnel current (51) is much greseter in magnitude than the emission current being predicted by
the non-rdatividic theory in the case of sudden switching on of an eectric field (Oleinik and Arepjev
1983). Thus, the tunnd current value ( a sudden switching on of the field ) is affected appreciably by
alowance for the positron band.

According to the relationships (43) and (51) the eectric current dengties in the vacuum state and in
the one-electron state corresponding to the discrete level in the well contain one and the same exponentia



14

factor. The difference between their pre-exponentia factorsis, however, very condderable. Thisis due to
the fact that in the present problem the eectron-positron pair cregtion is atwo-step process: first, under the
influence of an dectric field the negative-frequency eectrons go over to the discrete levels in the well with
the probability proportiona to &2 and then the tunnel passage of dectrons out of the well through the
barrier formed by an dectric fidd takes place.

The eectron positron pair creation mechanism investigated in the paper is due to the appearance of
the non-zero width of energy levels of dementary excitations. In an eectric fidd the eectron-positron
vacuum is polarised and transformed into the ungtable medium, the dementary excitations of which are
disntegrated and owing to this induce the tunnd dectric current.

Asis known (Landau and Lifshitz 1958, Blokhintsev 1961) the atom ionisation in a Steady dectric
field is the tunne dectron trangtion through the potentia barrier formed by the fidld. The tunndling in an
eectric field seems to be a phenomenon which may be accurately enough described by means of the one-
dimensona potentid well moddl. Therefore, the results presented here dlow us to think that the atom
ionisation in an dectric field is accompanied by processes of the eectron-positron pair creation, which may
be quite well observed a reatively weak fidds. Redly, assuming the pair crestion probability in the
hydrogen atom field and in an eectric field to be equd to (45), we find out that each second in 1¢cm® of the

hydrogen gas taken at norma conditions the pairs are created with the total energy of the order of 10°* J .
Aswas explained above, the digtinctive feature of the modd considered in the paper is the absence
a z® -¥ of the flux of pogtrons crested in the wdl. It is due to the fact that the gpplied fidd & is
different from zero only a z > 0. One may show that if thefidd & isnonvanishing a dl vduesof z there
will be a potentid barrier & z < 0 and, consequently, aflux of podtronswill occur a z® - ¥ . Podstrons
penetrating the barrier may reech the plate of a capacitor and annihilate with eectrons of the plate,
producing destructions (microexplosions) in it. This process of annihilation need not be accompanied by the

X-ray emisson.
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Appendix 1. Wavefunctions of the relativistic electron in a potential well and in

an electric field
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We seek the solution of the Dirac equation
(fi- v - mj (zt)=0 (AL1)

in the fidd with the potentid energy vV =V(z) intheform

i (z.t)=expl- ip,t +ip,x+ip,y)u, (id/dz) (2), (s = +1) (AL.2)
Here 1= goﬂ‘”){ gﬂlw’ P. =p, tip,
&P, -V+m+id/d29 & p. 0
ged_g - é +v-+F:;. - d/dz? u*a'e;_zé: épo - +pr‘ h d/dzi (ALY
g P, o gpo-v-m+id/dz;J
Thefunction (z) satisfies the equation
|d2/dz? +iav/dz+(p, - V)? - m? - p?- p2f(z)=0. (AL4)
The potentia well. The solution of the equation (A1.4) in thefield
V =-V,q(z+L)g(- 2) (v, = const) (AL5)
must obey the following continuity conditions
T@) =i,
%(ZZ) = d’; gz) A (A16)
r@)..., =1,
djd(zZ)|Z=+o - djd(zZ)|Z= - iV, (0)

These conditions may be derived most smply by integrating the equation (A1.4) over two ranges lying in
thevicinity of thepoints z=-L axd z=0

The wavefunctions describing the eectron bound statesin the fidd (A1.5) are of the form
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(pz <m? +pz,p2 =2+ p?):
i 9t =j D(2eml- ipgt +ipx+ip,y)
j W(z)=du_(i d/dz){q(- z- L)e"* +q(z+L)q(- 2) (AL7)
(Bt +a et ) oD@, +E e )

where
d =d

X u,, (i d/dz) = u, (i d/dz) etc.

-t -

|6|2 :%{klkzzm‘ZVO-l(Zp0 +VO)-1[1+ le(p0 +VO)/(2p0 +V, )]'lexp 2k L

7, =2 lrs (v, - ik)/kJeplisk,L- ki)

k; = (m? +p2 - p2)”, K, :[(loo +V,) - m - pf]llz'
The wavefunctions | 5;> obey the orthonormalisation condition
& D1 1242 = .o

The quartities p(®), representing the energy levels of dectron bound states, are the roots of the dispersion

equation
(k2 - k2 -VZ)snk,L - 2Kk, cosk,L =0 (A18)

For smplicity, we confine ourselves to considering the shallow potential well V, << m . In this case the
equation (A1.8) has the roots only if the inegudities (p, +V,)* - m? - p? >0, p2- m? - p? <0 are
fulfilled. Note that these inequalities can be carried out Smultaneoudy only for eectron dates, i. e at
p, >0.

We shdl fromnow onput p, = p, =0, confining ourselves to the one-dimensiond problem with
thevariable z.

The wavefunctions of the continuous spectra stetes ( p; 3 m? ) are defined by

i ® (zt)=ep(- ipt)i “. (2) (AL9)
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where the ‘+ and’-* signs correspond to the eectron (p0 3 m), and positron (p0 £ - m), states, d,, is

the normaisation congtant, the constants g, and g, are defined by the equdities

€. ]ai ¢ =0 (A1.10)

o Bl@]'§ $0(2)= el o8- p,)
Thefunction j ©)(z) areof theform:
| ()= - 2- Lyoplink 2 refz-+ Ll- 2 el 2)+alep(- inc,2)
+q(2)lb! exp(ink,z) +b% exp(- ink,z)) n=+1
k =(pz - m?)”, (AL11)
a®) =1[1+ (nk, +V, )/nk, |exp(ink,L - ink,L):

blY =1[1+ (nk, - V,)/nk,Ja{” +1[1F (nk, +V,)/nk Ja®)

Some relationships for the coefficients bﬁ“) used in this paper are given:

@

by bt +b" bt ™) (k, +np, )/(k, - np,) =0, (AL12)

n n 2
b(?) bl

g(kl - npo)/(kl + npo)’

:|b£n) 2

o) = [k, + po)/ (i, - o).

Thecongants g,,g9, and d, areexpressed by

o, =pPJ- [pl])/bo:(Y, g, = (Po +k )/(ps - k),
A, = [+[o]) /260 40k | p, - k. (AL13)

Appendix 2. The potential well and the steady electric field

We present the solution of equation (A1.4) inthefidd

V =-Vo(z+L)a(- 2)- &¢z(2) (A2.1)
a p. £m?®. Taking into account thet the continuity conditions (A1.6) are dso vdid for thefidd (A2.1) we
obtain the following formulae for the wave eectron function

foo(zt)=e™f (2) (A2.2)
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f o (2) =00, (o/dzel- 2- L)e" +qlz+L)al(- 2)ld.e" +a. &™)

+q(z)[cl°%—il (h)+C2“@iI l(lh)ﬂ
where the quantities k,,k, and a, are defined by the equaities (A1.7) and the rest of the notation has the
following meening: 7, (h) and 2, ,(ih) arethe parabolic cylinder functions,

| =m?/2e,6, h=g "z, z =2(2e,¢) ¥*(p, +e,¢2) (A2.3)

s R NP O R CRE N RCRE R IANCN

9

o ) el @, 3) i 48

no=hp  [A7 e faple )

Thecondants ¢, and c, arerelated by theequdity (at p, = Rep, )
| de]” =’ (A2.4)

The following normalisation conditions are carried out
O e 2)f o (2) = do dpg- o) (A25)
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