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Abstract The exact solution of the problem of the vacuum polarisation and tunnel transitions of an electron 
out of the potential well under the influence of an electric field is obtained. The conclusion drawn earlier 
concerning the existence of the intense vacuum polarisation mechanism by the external field, for which the 
number of electron-positron pairs created in the field is proportional to the energy levels width of 
elementary electron-positron excitations, is confirmed. The estimates of the pair creation probability allow 
us to think that the atom ionisation in a steady electric field is accompanied by creation of electron-positron 
pairs which can be quite well registered experimentally at the relatively weak fields. It is shown that at the 
sudden switching on of an electric field, the value of the tunnel current of electron emission out of the well is 
affected appreciably by allowance for the positron band. 
 
1. Introduction 

In this paper the non-stationary problem of the vacuum polarisation and tunnel transitions out of the 

potential well under the influence of an electric field E  switched on instantaneously at some moment of time 

is considered. The tunnel current occurring both in the one-electron state which corresponds to the bound 

electron state in the potential well before switching on the field E  and in the vacuum state is calculated. 

 The electron tunnelling out of the potential well and the creation of electron-positron pairs are due 

to the decay of quasistationary states being formed in an electric field. When considering these phenomena 

we use the Drukarjev’s method ( Drukarjev 1951 ), which offers the most rigorous and consistent way of 

describing the decay processes. 

 As is seen from a comparison of the results obtained and the non-relativistic tunneling theory results 

( Oleinik and Arepjev 1983 ), when considering the electron tunnelling out of the well in the case of sudden 

switching on of an electric field it is important to take into consideration the positron band which markedly 
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affects the value of tunnel current. For the one-level well the maximum value of tunnel current is 

considerably larger than that in the non-relativistic theory. 

 The exact solution of the vacuum polarisation problem given in the paper confirms the conclusion 

drawn earlier ( Oleinik 1981 ) concerning the existence of the pair creation mechanism for which the 

number of pairs created in an external field is proportional to the energy level width of elementary 

excitations of the electron-positron field. According to numerical estimates presented, the vacuum 

polarisation due to the appearance and decay of quasi-stationary states is considerably stronger than that 

caused by the steady and uniform electric field in the absence of the potential well  ( Schwinger 1951 ). 

 In § 2 the general formulae for the electron current density in one-electron and vacuum states are 

given. In § 3 the correction to the energy and the width Γ  of the quasi-stationary electron level in the well 

are calculated. The formula for the electric current of electron-positron pairs created in an electric field is 

derived. The calculation of the electron tunnel current out of the well is given in § 4. The formulae for the 

wavefunctions of a relativistic electron in the well and in an electric field are presented in the appendix. 

 
2. General formulae for the electric current density 

Let us consider the electron-positron in the potential well 

 ( ) ( ) ( ),00 zLzVzV −θ+θ−=  00 >V  (1) 

where V0  and L  are the depth and the width of the well. The electron-positron field operator of the 

system in the Schrödinger picture may be presented in the form ( for simplicity, we confine ourselves to 

investigating the one-dimensional model ): 
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In this expression ( ) ( )zp

±
σνϕ

0
  and  ( )( )zn

+
σϕ  are the solution of the Dirac equation in the field  (1)  ( see 

appendices ); the signs ‘+’ and ‘-‘ correspond to the electron and positron states, respectively; the 

functions  ( )±
σνϕ

0p   and  ( )+
σϕ n   describe the continuous spectra states and the bound states of electron in the 

well, respectively;  p0   and σ  are the energy and the spin quantum number, ( )1±=νν  is the quantum 

number characterising the doubly degenerate states with the fixed values of  p0  and σ ; n  is the quantum 

number pertaining to the discrete electron levels with the energy np0  in the well; +
σνσν βα

00
, pp  and σα n  are 
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the second quantisation operators for the fermi-particles obeying the ordinary anticommutation relations 

and equalities 0000
00

=α=β=α σσνσν npp  ( 0  is the vacuum ket-vector ). 

Let us suppose that at the moment of time  t = 0   in the rang  z f 0   the electric field with intensity 

E  is switched on. The total potential energy of the system is given by 

 ( ) ( ) ( ) ( ),, 00 tzzezVtzV θθ−= E  ( )00 >Ee  (3) 

The electron-positron field operator in the electric field is now written as follows 

 ( ) ( ) ( ) ( ) ( ) +
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Here  ( ) ( )tzp ,
0

±
σνψ   and  ( )( )tzn ,+

σψ  are the Dirac equation solutions in the field with the potential energy (3) 

satisfying the initial conditions: 

 ( ) ( ) ( ) ( ),0,
00

zz pp

±
σν

±
σν ϕ=ψ  ( ) ( ) ( ) ( )zz nn

+
σ

+
σ ϕ=ψ 0,  (5) 

The electric current density in the vacuum state  0   and in the state  0+
σα n , corresponding to the 

bound electron state in the well is defined by the formulae 

 ( ) ( ) ( ) 0,,0, tztzetzj zv ΨαΨ= +  

 ( ) ( ) ( ) ,0,,0, +
σ

+
σσ αΨαΨα= nznn tztzetzj  zz γγ≡α 0  (6) 

Substituting the field operator expression (4) into (6) we arrive at the following relationships: 

 ( ) ( ) ( )[ ] ( ) ( )∑ ∫
σν

−
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−
σν

+−
σν ψαψ=

m

pzpv tztzdpetzj ,,,
000  

 ( ) ( ) ( ) ( )[ ] ( )( )tztzetzjtzj nznvn ,,,, +
σ

++
σσ ψαψ+=  (7) 

With the aid of the formulae in the appendices one can easily prove the equalities 

 ( ) ( )[ ] ( ) ( ) ( )( ) 11
12

00

−−
σν

+−
σν βπν−=ϕαϕ zz pzp  (8) 

 ( ) ( )[ ] ( ) ( ) 0=ϕαϕ +
σ

++
σ zz nzn  

It is seen from (7) and (8), that 

 ( ) ( ) 0,, == σ tzjtzj nv  at t ≤ 0  (9) 
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The quantities  vj   and  σnj   have the following physical meaning:  vj  is the electric current density 

produced by electron-positron pairs created under the influence of the electric field,  σnj  is the tunnel 

current density (the emission current) out of the potential well. 

According to (7) the calculation of the electron current density reduces to evaluating the 

wavefunctions  ( ) ( )tzp ,
0

−
σνψ   and  ( )( )tzn ,+

σψ . We expand these functions in terms of the exact solutions of 

the Dirac equation in the field 

 ( ) ( ) ( )zzezVzV θ−=  E00  (10) 

(see appendices). The expansions mentioned above are of the form  ( at t ≥ 0  ) 

 ( ) ( ) ( ) ( ),,
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0 00∫ ∑
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where  ( )σνσ′′ 00
pa p   and  ( )σσ′′ na p0

 are the constant coefficients defined by the initial conditions (5), the 

functions ( )zp σ′′φ
0

 being determined by the formulae (A2.2). In the expansions (11)-(12) we have retained 

only the eigenfunctions  ( )zp σ′′φ
0

  with the energy  ( )′ ∈ −p m m0 , .Allowance for the eigenfunctions with 

energies lying outside the above mentioned interval would allow one can to calculate the wavefunction part 

which describes the spreading out of the wavepacket in time (Drukarjev 1951, Oleinik and Arepjev 1983); 

in this paper, however, we shall not be interested in the spreading out of the wavepacket in time. In this 

case the main contribution to the electric current density comes from the poles of integrands in (11)-(12) 

which occur only at  ( )Re ,′ ∈ −p m m0 .  

 
3. Electron-positron pair creation 

Let us consider the wavefunction ( ) ( )tzp ,
0

−
σν′ψ . The expansion coefficients (11) are expressed by the 

formulae 

 ( ) ( ) ( ) ( ) =ϕφ=σν ∫
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00 int
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 zeH E0int −≡  

Making use of the formulae in the appendices for the wavefunctions  σ′′φ
0p   and  ( )−

σνϕ p  the coefficients (13) 

may be transformed into the form 
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where the following notation is used 
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Taking into account the equalities (14) and (A2.2) the wavefunction, ( )−
σνψ

0p  may be written as 

follows  ( at 0>z  ): 
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where the prime  ( ′ )  means that in the corresponding quantity one ought to replace  p0   by  ′p0  

( for example  ′ =
= ′

c c
p p1 1

0 0
 ). 

The integrand poles in (17) coincide with zeros of the functions  ′c1
*  and  ′c 2

* . Taking into account 

(A2.3), we represent the equalities ( )c n
n

* ,= =0 1 2   in the form 
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=
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where ( )01
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 We confine ourselves to investigating the weak electric field, for which the condition 
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 1>>λ  (20) 

is fulfilled. In addition to (20) we shall henceforth assume that 

 ,~ 12
0 >>−λ>>λ p  ( ) ,~ 12

3
2

1 2
0 >>−λλ− p  E000 2~ epp ≡  (21) 

Assuming the inequalities (20)-(21) to be satisfied, we turn to computing the asymptotic formulae 

for the functions  ( )0ηλ−iD   and  ( )01 η−λ iiD . These functions satisfy the equation 
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where  2,~2 0 ibpy +λ== . According to Abramowitz and Stegun (1964) the linearly independent 

solutions of (22) are of the form 
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The formulae (23) may be derived by the JWKB method. We represent the functions ( )0ηλ−iD   

and  ( )01 η−λ iiD   in the form of linear combinations of the functions  ( )±ϕ ; in particular 
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where the constants  ( )2,1=α nn   may be defined by using the known expression for the parabolic 

cylinder functions at  ~p0 0→ . A simple calculation leads to the following formulae 
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Making use of the presented relationships and retaining throughout only the largest terms, we obtain 
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 ±∆+κ= aa 1
2
1  



 7
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
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 The substitution of (26) into (18) gives 
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If an electric field is absent the last equality goes over into the dispersion equation  ( )G p0 0=  (A1.8) 

defining the energy levels of the bound electron states in the well. Denoting the roots of the equation (27) 

by  ( ) ( )p p p i
n n n n0 0

0
0= + − ±∆ Γ , where  ( )p

n0
0  are the roots of the dispersion equation (A1.8), we obtain the 

following equation for defining the quantities  ∆ p
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From (28) we get 
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The quantities ∆ p
n0   and  ( )Γ

n

+   represent the shift and the width of energy level of a quasi-

stationary state appeared in the electric field. In order to compare these quantities and the analogous ones ( 

∆ E
n
  and  Γ

n
 ) of the non-relativistic theory (Oleinik and Arepjev 1983), we pass to the non-relativistic 

energy reading by putting, 

 p m V E0 0= − +  (30) 

Then ( ),2 01 EVm −=κ  k mE2 2=  
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Using the last formulae and retaining only the largest terms, we obtain (in the ordinary system of units) 
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The quantities  ∆ p
n0   and  ( )Γ

n

+   coincide exactly with the non-relativistic ones ( ∆ E
n
  and  Γ

n
 ). 

At  0>− zt   the integration path in (17) may be closed in the lower half-plane of the complex 

variable ′p0 . Taking into account that it is only the function  ( )′
−

c1

1*  that has singularities in the lower half-

plane of  ′p0   and retaining in (17) only the singular terms, we obtain 
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

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where the symbol  Re s
p p n′ =0 0

  means the residue in the pole defined by the formula 
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For convenience, we represent the expression (33) in the form 
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In deriving the relationships (34)-(35) we have used the equality 
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Let us calculate the electric current density in the state (34) keeping only one term in the sum over  

n : 
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Here the equality 

 ( ) ( ) ( )z
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is taken into account. 

Further calculation of the vacuum current density  reduces to the calculation of the coefficients  

( ) ( )Λ2 0 0
± ′p p, , defined by (15). With the aid of the asymptotic formulae (23) and (24) we obtain the 

following representation: 
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
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
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=
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The integration in (38) by parts using the equality 
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
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

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Taking into consideration the equalities (37)-(39) we arrive at the following representation for the 

coefficients ( ) ( )Λ2 0 0
± ′p p, : 
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
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±′−λ′−λ

′−λλλ
×

−

 (40) 
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With the aid of relationships (35), (360 and (40) we find 

 ( )[ ] ( )∑
νσ

−
σν

+−
σν =ψαψ≡

,
000 pzpnpj  

 ( ) ×κ+





−
κ









+κλ

= −ζ− 2
12

1
~

2

4

2
0

2
0

1

2

00

1

1
2

0

4
2

2
1

8
1

Le
pppp

k

V

mk
n

n

n

nn

n n  

 ( ) ( ) ( ) ( ) ( )( )[ ]∑
±=ν

+++
ν

−−
νν −Γ−+×

1

22 2exp ztQrQrd nnn  (41) 

Here the following notation is used: ( ) ( ) ( )Q Q p p
n n

± ±≡ 0 0,  

 ( )( ) ;11,
0

1

2

1

1
00 






+





κ′

±=′±

mp

kk
ippQ mm  

 ( ) ,
2

3
2~ 23

0
0

nn EV
e

m −=ζ
E

 ( )E p m V
n n

= − +0
0

0  

Making use of the equalities (16), (A1.12) and (A1.13), one can readily derive the formula 

 ( ) ( ) ( ) ( ) =+∑
±=ν

++
ν

−−
νν

1

22
nn QrQrd  

 ( ) ( ) ( )
( )

( ) ( ) ( ) ( )[ ]












+ββ
β

+
−

+
π

+
= −

−++− ..
1

8
1*

1
1
1

*
21

1

2

2

2
102

1
2

10
ccQQQ

m

kp
Q

km

kp
nnnn  (42) 

The quantity j
p n0

 decreases as p 0
6− at 22

0 mp >> . 

Let us confine ourselves to the non-relativistic values of the quantity p0 : 

 p m V E
n0 0− ≡ ≤ −∆  

In this case  the expression in curly brackets in (42) slightly depends on p0  and equals unity in the order of 

magnitude. To obtain  the numerical estimate, we replace this expression by unity. After some 

simplifications we obtain: 

( ) ( ) ( )[ ]ztLe
pp

EV

EV

mp

V

E
j nn

n

n

n

n
np

n −Γ−κ+






−
−







−
−







λπ

= +−ζ− 2exp1
8

1 2
12

1
~

2

4

00

0
2

1

0

0

2

0
0

 (43) 

According to (43) the dependence of the quantity j
p n0

 on the field is of the form: 
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 ( ) ( )+Γ≈ nnp ej
2

00
E  

The appearance of the factor ( ) ( )[ ]exp − −+2Γ
n

t z  in (43) allows one to interpret the quantity 

j dp
p n0 0  in the following way. This quantity is a flux of electrons created in pairs together with positrons in 

the well under the influence of an electric field E  and moving away from the barrier in the direction 

z→ + ∞  at the velocity of light, the energy of positrons formed in the field lying in the range 

( )− − −p p dp0 0 0, . It is obvious that the quantity − ≡
−∞

−

∫e j dp Q
p n

m

0 00
 at t z z− ≥ → + ∞0,  is the total 

electric charge of electrons created per unit time in the field under consideration. The peculiar feature of the 

given model consists in the fact that in the range z→ − ∞  the positron flux does not occur; the total electric 

charge of positrons equal to − Q  is concentrated near the boundary z L= −  of the potential well. 

Let us estimate the quantity 

( )
∫

−

∆+−

≡
m

m

npV jdpj
n 00 , 

assuming that the condition nEV −<<∆ 0  is satisfied. We may approximately put: 

 
( )

( ) 21
03

2

4

00

0
2

1

0

0
0

2
3 −

−

∆+−

−∆≈






−
−







−
−

∫ n

m

m n

n

n

EV
pp

EV

EV

mp
dp  

Estimate the vacuum current for the following values of parameters of the problem 

 ,105 6 cmv⋅=E  V ev0 1= ,  E V
n 0

1
2= ,  ∆ V E

n0
1
5− =  (44) 

Write out some auxiliary quantities 

 ;102.0 6
00 cmeVb −⋅=≡ E  ;103.12 9

0
32 ⋅==λ Eecm h  

 ;103.0~ 42
0 ⋅=−λ np  8.4

~
2 =ζn  

Putting additionally 11 ≈κ L , we obtain 

 jVn
≈ − −10 10 1sec  (45) 

It should be emphasised that the pair creation probability in electric field in the presence of the potential 

well is by no means exponentially small. Remember that according to Schwinger (Schwinger 1951) the pair 
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creation probability in an electric field in the absence of the well is proportional to the exponent  πλ−2e  

which equals ( )exp − ⋅8 109  for the chosen parameters (44). Compare this quantity with the exponent 

( )nζ− ~
2exp  involved in (43): for the same parameters the latter exponent is equal to ( )exp .− 4 8 ! 

4. Electron emission 

Now we turn to calculating the tunnel current of electron emission defined by the wavefunction ( )( )tzn ,+
σψ  

(12). The coefficient ( )σσ′′ na p0
 in (12) is expressed by 

 ( ) ( ) ( ) ( ) ( ) ( )∫
∞

+
σ

+
σ′′σ′′ ϕφ

−′
=σ

0
int0

00
00

1
zzHzdz

pp
na np

n

p  

Using the formulae in the appendix we obtain the following representation 

 ( ) ( ) ( )( ) ×−′α+αδδ−=σ
−

−′σ′′
10

0011
*2 ~~~

2
00 nnnnpp ppmna  

 ( ) ( )( ) ( ) ( )( )[ ] σσ′δ′Λ′+′Λ′× 0
0020

*
2

0
0010

*
1 ,, nn pppcpppc  (46) 

 ( )( ) ( ) ( )( ) ( )[ ]∫
∞

κ−
−λ

π
λ η′κ−+η′=′Λ

0
1

4
1

0
00

0
001

1~~, z

i

i

nnin
nezieipidzepp DDE  

 ( )( ) ( ) ( )( ) ( )[ ]∫
∞

κ−
λ−

π
λ−λ− η′κ−+η′=′Λ

0

41
1

0
010

0
002

1~~, z

i

i

nnin
nezeipdzepp DDE  (47) 

where ( )
( )

,
2

~

0

0
00

0
Ee

p
p n

n =  
( )

,
2

~
0

00
0

1
1

npp

n
e

=

κ=κ
E

 ( )zep
e

e i E
E

00

0

4

2

2 +′=η′ π−  

The formulae (46) and (47) are analogous to ( 14 ) and (15). As is seen from (47) and (15) the coefficient 

( )( )Λ
m n

p p′0 0
0,  may be obtained by the substitution ,11 nik κ−→m  ( )p p

n0 0
0→  made in the formula for  

( ) ( )Λ
m

p p± ′0 0, . 

 Using the formulae presented above and performing the calculations in the same way as in the 

preceding section, we obtain the following expression for the wavefunction ( at  t z z− ≥, 0  ) 

 ( ) ( ) ( ) ( );, 0∑ η




=ψ λ−σ

−+
σ

m

mim
tip

mn
dz

d
iuengtz m D  

mppm
00 =

η=η  

 ( ) ( ) ( )[ ]×π−λ−λλλα+αδ−= πλ
− 4lnexp~~~ 2

11 ieing nnnm  
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 ( )( ) ( ) ( )( ) ( )mnm
mm

mnm pp
Vm

k
Lpp ζ−Λκκ+−× −− ~

2exp,
2

1 0
002

0
2

2
2

2
11

12
110

00  (48) 

Calculate the electron current density in the state ( )( )tzn ,+
σψ  keeping only one term in the sum over 

m  in (48) 

 ( )[ ] ( ) ( ) ( ) ( )zt

mnznn
mengemj

−Γ−πλ−+
σ

++
σ

+

=ψαψ≡ 22222  (49) 

Further, take into account the equality 

 Le 122

11
~~ κ−

− =α+α  ( at  ( )p p
n0 0
0=  ), 

and make use of the formula for the normalisation constant nδ~   ( see appendices ) and for the function  

( ) ( )Λ2 0 0
± ′p p,   (40). The final result is: 

 ( )[ ] ( ) ( ) ×κ+λ







−
−







−= −1

12
1

2

0
00

0

2

00

21
0 12 L

pp

EV

V

E

V

E
EVmj n

nm

mmn
nn  

 (50) 

 ( ) ( )[ ]
( ) ( )[ ]

( )( )[ ]zt
pp

p
L m

nmm

m
m −Γ−

κ+−λ−λ

λ−λ−
κ+× +

−
− 2exp

~~~

~exp
1

4

1

212
0

212
0

21232
03

4
2

12
1  

Consider the case of the one-level potential well. Assuming m n=  and using formula (34) for the 

energy level shift, we arrive at the following expression for the tunnel current 

 ( ) ( ) ( )+−

=−
Γ=







 −λ
λ

−κ+−= nnn
n

nztn pL
V

EV
Ej 2~

3

4
exp12

232
0

1
12

1

0

0
0

 (51) 

For the chosen values of parameters (44), we obtain 

 j s
n

≈ ⋅ −4 101 2 1  

 Note that expression (51) coincides exactly with the formula for tunnel current derived within the 

stationary non-relativistic theory, which corresponds to the adiabatic switching on of an electric field. At the 

same time the tunnel current (51) is much greater in magnitude than the emission current being predicted by 

the non-relativistic theory in the case of sudden switching on of an electric field (Oleinik and Arepjev 

1983). Thus, the tunnel current value ( at sudden switching on of the field ) is affected appreciably by 

allowance for the positron band. 

 According to the relationships (43) and (51) the electric current densities in the vacuum state and in 

the one-electron state corresponding to the discrete level in the well contain one and the same exponential 
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factor. The difference between their pre-exponential factors is, however, very considerable. This is due to 

the fact that in the present problem the electron-positron pair creation is a two-step process: first, under the 

influence of an electric field the negative-frequency electrons go over to the discrete levels in the well with 

the probability proportional to 2E  and then the tunnel passage of electrons out of the well through the 

barrier formed by an electric field takes place. 

 The electron-positron pair creation mechanism investigated in the paper is due to the appearance of 

the non-zero width of energy levels of elementary excitations. In an electric field the electron-positron 

vacuum is polarised and transformed into the unstable medium, the elementary excitations of which are 

disintegrated and owing to this induce the tunnel electric current. 

 As is known (Landau and Lifshitz 1958, Blokhintsev 1961) the atom ionisation in a steady electric 

field is the tunnel electron transition through the potential barrier formed by the field. The tunnelling in an 

electric field seems to be a phenomenon which may be accurately enough described by means of the one-

dimensional potential well model. Therefore, the results presented here allow us to think that the atom 

ionisation in an electric field is accompanied by processes of the electron-positron pair creation, which may 

be quite well observed at relatively weak fields. Really, assuming the pair creation probability in the 

hydrogen atom field and in an electric field to be equal to (45), we find out that each second in 1 3cm  of the 

hydrogen gas taken at normal conditions the pairs are created with the total energy of the order of 10 4− J . 

 As was explained above, the distinctive feature of the model considered in the paper is the absence 

at z → −∞  of the flux of positrons created in the well. It is due to the fact that the applied field  E  is 

different from zero only at z f 0 . One may show that if the field E  is non-vanishing at all values of z  there 

will be a potential barrier at z p 0  and, consequently, a flux of positrons will occur  at  z → −∞ . Positrons 

penetrating the barrier may reach the plate of a capacitor and annihilate with electrons of the plate, 

producing destructions (microexplosions) in it. This process of annihilation need not be accompanied by the 

X-ray emission. 
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Appendix 1. Wavefunctions of the relativistic electron in a potential well and in 

an electric field 
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We seek the solution of the Dirac equation 

 ( ) ( ) 0,ˆ
0 =ϕ−γ−∂ tzmVi  (A1.1) 

in the field with the potential energy  ( )V V z=   in the form 

 ( ) ( ) ( ) ( ),~exp, 0 zdziduyipxiptiptz yx ϕ++−=ϕ σ ( ).1±=σ  (A1.2) 

Here $∂ =γ0
t⋅∂

∂ +γγ ,
r⋅∂

∂
 p p ip

x y± = ±  

 u i
d

dz

p V m i d dz

p

p V m i d dz

p

1

0

0





 =

− + +
−

− + + −



















+

+

; u i
d

dz

p

p V m i d dz

p

p V m i d dz

−

−

−





 =

− + +

− − +



















1

0

0

 (A1.3) 

The function  ( )zϕ~   satisfies the equation 

 ( )[ ] ( ) .0~2222
0

22 =ϕ−−−−++ zppmVpdzdVidzd yx  (A1.4) 

The potential well. The solution of the equation (A1.4) in the field 

 ( ) ( )zLzVV −θ+θ−= 0  ( )V const0 =  (A1.5) 

must obey the following continuity conditions 

 ( ) ( )
00

~~
−−=+−=

ϕ=ϕ
LzLz

zz  

 
( ) ( ) ( )LV

dz

zd

dz

zd

LzLz

−ϕ+ϕ=ϕ

−−=+−=

~
~~

0
00

 (A1.6) 

 ( ) ( )
00

~~
−=+=

ϕ=ϕ
zz

zz  

 
( ) ( ) ( )0~

~~
0

00

ϕ−ϕ=ϕ

−=+=

iV
dz

zd

dz

zd

zz

 

These conditions may be derived most simply by integrating the equation (A1.4) over two ranges lying in 

the vicinity of the points z L= −   and  z = 0 . 

 The wavefunctions describing the electron bound states in the field (A1.5) are of the form  
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( )p m p p p p
x y0

2 2 2 2 2 2p + = +⊥ ⊥, : 

 ( ) ( ) ( )( ) ( )yipxiptipzt yxnn ++−ϕ=ϕ +
σ

+
σ 0exp,r  

 ( ) ( ) ( ) ( ) ( ) ( ){ zLzeLzdzdiuz z

nnn
n −θ+θ+−−θδ=ϕ κ

σ
+
σ

1
~

 (A1.7) 

 ( ) ( )( ) }z
nn

zik
n

zik
n

nnn ezee 122
1111

~~~~ κ−
−

−
− α+αθ+α+α×  

where 

 ( ) ;
~~

0
00 npp

n =
δ=δ  ( ) ( ) ( )0

00 nppn dzdiudzdiu
=σσ =  etc. 

 ( ) ( ) ( )[ ] LVpVpLVpVmk 1
1

00001
1

00
1

0
22

21

2
2exp212

4
1~ κ++κ++κ=δ −−−−  

 ( )[ ] ( )LLkikiV 12210 exp1
2
1~ κ−σκ−σ+=α σ  

 ( ) ,
212

0
22

1 ppm −+=κ ⊥  ( )[ ]k p V m p2 0 0

2 2 2
1 2

= + − − ⊥ .  

The wavefunctions  ( )+
σϕ n   obey the orthonormalisation condition 

 ( )( )[ ] ( ) ( )∫ ′σσ′
+
σ′′

++
σ δδ=ϕϕ nnnn zzdz  

The quantities  ( )p
n0
0 , representing the energy levels of electron bound states, are the roots of the dispersion 

equation 

 ( ) 0cos2sin 2212
2

0
2
1

2
2 =κ−−κ− LkkLkVk  (A1.8) 

For simplicity, we confine ourselves to considering the shallow potential well V m0 pp . In this case the 

equation (A1.8) has the roots only if the inequalities ( ) ,0222
00 >−−+ ⊥pmVp 0222

0 <−− ⊥pmp  are 

fulfilled. Note that these inequalities can be carried out simultaneously only for electron states, i. e. at 

00 >p . 

We shall from now on put  p p
x y

= = 0 , confining ourselves to the one-dimensional problem with 

the variable  z . 

The wavefunctions of the continuous spectra states  ( )p m0
2 2≥   are defined by 

 ( ) ( ) ( ) ( ) ( )ztiptz pp

±
σν

±
σν ϕ−=ϕ

00 0exp,  (A1.9) 

 ( ) ( )
( )( ) ( ) ( )

( ) ( ) ( ) ( )





−=νϕ+ϕγ

=νϕγ+ϕ
=ϕ

±
−

±

±
−

±

σν
±

σν
1

1

112

1
*
11

0 atzz

atzz
udzp  
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where the ‘+’  and’-‘ signs correspond to the electron ( )p m0 ≥ , and positron ( )p m0 ≤ − , states, d ν  is 

the normalisation constant, the constants 1γ  and  2γ  are defined by the equalities 

 ( )[ ] ( ) 0
00

=ϕαϕ ±
ν−σ

+±
σν pzp  (A1.10) 

 ( ) ( )[ ] ( ) ( ) ( )∫ −′δδδ=ϕϕ νν′σσ′
±

σν
+±

ν′σ′′ 000
ppzzdz

opp  

The function  ( )( )z±
νϕ   are of the form: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )zkizkizLzzkiLzz 21211 expexpexp ν−α+να−θ+θ+ν−−θ=ϕ ν
−

ν±
ν  

 ( ) ( ) ( ) ( ) ( )( );expexp 1111 zkizkiz ν−β+νβθ+ ν
−

ν  1±=ν  

 ( )k p m1 0
2 2 1 2

= − ,  (A1.11) 

 ( ) ( )[ ] ( );exp1 122012
1

1 LkiLkikVk ν−ν±ν+ν±=α ν
±  

 ( ) ( )[ ] ( ) ( )[ ] ( )ν
−

νν
± αν+ν+αν−ν±=β 11022

1
11022

1
1 11 kVkkVk m  

Some relationships for the coefficients ( )ν
σβ  used in this paper are given: 

 ( ) ( ) ( ) ( ),1 0101

2

1

2

1 pkpk ν+ν−


 β−=β νν
−  

 ( ) ( ) ( ) ( ) ( ) ( ) ,001011
*

1
*

1
*
1 =ν−ν+ββ+ββ ν−ν

−
ν−

−
ν pkpk  (A1.12) 

 ( ) ( ) ,
2

1

2

1
ν−ν β=β  ( ) ( ) ( ) ( )[ ] .2

0101

21
1

21
1 pkpk −+β=β −
−

−  

The constants  21 ,γγ  and  νd   are expressed by 

 ( ) ( )( ) ( ) ( ) ,1 1*
1

1
1

1
1

1
11

−
−βββ−β=γ  ( ) ( ),101012 kpkp −+γ=γ  

 ( )( ) ( ) .161 101
1

1
1

1

2
kpkd ν−β⋅πβ+=ν  (A1.13) 

Appendix 2. The potential well and the steady electric field 

We present the solution of equation (A1.4) in the field 

 ( ) ( ) ( )zzezLzVV θ−−θ+θ−= E00  (A2.1) 

at  p m0
2 2≤ . Taking into account that the continuity conditions (A1.6) are also valid for the field (A2.1) we 

obtain the following formulae for the wave electron function 

 ( ) ( )zetz p

tip

p σ
−

σ φ=φ
0

0

0
,  (A2.2) 
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 ( ) ( ) ( ) ( ) ( )( ){ zikzikz

p eezLzeLzdziduz 221

0 11
~~ −

−
κ

σσ α+α−θ+θ+−−θδ=φ  

 ( ) ( ) ( )[ ]}η+ηθ+ −λλ− iccz ii 121 DD  

where the quantities 21 ,kκ  and σα~  are defined by the equalities (A1.7) and the rest of the notation has the 

following meaning: ( )ηλ−iD   and  ( )η−λ ii 1D   are the parabolic cylinder functions, 

 ,E0
2 2em=λ  ,4ζ=η π− ie  ( ) ( )zepe EE 00

21
022 +=ζ −  (A2.3) 

 ( ) ( ) ( ) ( ) ( )[ ] ( )








ηα+α−α−α+η
η

α+α= −λ−−
−π

−λ−
πλ

01110112
21

0
4

01
9

11
2

1
~~~~2~~ iVkeei

d

d
iec i

i

i
DED  

( ) ( ) ( ) ( ) ( )[ ] ( )








ηα+α−α−α+η
η

α+α−= λ−−−
−π

λ−−
πλ

0110112
21

0
4

0
0

11
2

2
~~~~2~~

i

i

i Vkee
d

d
iec DED  

 ,
00 =

η=η
z

 ( ) .4
122

1
22 −πλ π=δ mce  

The constants  c1  and c2  are related by the equality  ( at p p0 0= Re  ) 

 
2

2

2

1 cc =⋅λ  (A2.4) 

The following normalisation conditions are carried out 

 ( ) ( ) ( )∫ −′δδ=φφ σ′σσ
+

σ′′ 0000
ppzzdz pp  (A2.5) 
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