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Abstract. Transition probabilities in unit time and probability fluxes are compared in studying the 
elementary quantum processes the decay of a bound - state under the action of time varying and constant 
electric fields. It is shown that the difference between these quantities may be considerable, and so the use 
of transition probabilitiesW  instead of probabilities fluxes Π  in calculating the particle fluxes, may lead to 
serious errors. The difference between Π  and W  is due to the fact that in the formulae for probability 
fluxes the interference is taken into account between the transition amplitudes whereas in the formulae for 
transition probabilities there are no interference terms. The quantity W  represents the rate of change with 
time of the population of the energy levels relating partly to the real states and partly to the virtual ones. For 
this reason it cannot be directly measured in experiment. Attention is drawn to the concept of the vacuum 
background that is treated as a physical medium consisting of virtual particles and as a framework in which 
the real quantum events occur. The vacuum background is shown to be continuously distorted when a 
perturbation acts on a system. Because of this the viewpoint of an observer on the physical properties of 
real particles continuously varies with time. This fact is not taken into consideration in the conventional 
theory of quantum transitions based on using the notion of probability amplitude. As a result, the probability 
amplitudes lose their physical meaning. All the physical information on quantum dynamics of a system is of 
contained in the mean values physical quantities. The existence of considerable differences between the 
quantities W  and Π  permits one in principle to make a choice of the correct theory of quantum transitions 
on the basis of experimental data. 
 
1. Introduction 

The main quantity measured in experiments on particle scattering in the number of particles emerging from 

the interaction region and passing in unit time through a certain surface defined by the solid-angle element 

Ωd , that is the particle flux referred to the solid angle Ωd  [ Blokhintsev 1961 ]. If a particle is described 

by the wavefunction  ( )Ψ r,t  , then in accordance with the principles of quantum mechanics the probability 

flux is determined by the expressions  
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where dS  - is the vector of the surface element corresponding to the solid angle Ωd  ,and j  is the 

probability flux density of the particles with the mass m . The integration of the quantity Πd  over the whole 

solid angle yields the total probability flux 

 Sjd
S

∫=Π  (2) 

Here S  is a closed surface enveloping the spatial region where the interaction occurs. 

 Introduce the transition probability in unit time 

 ( )∑=
n

n ta
dt

d
W

2  (3) 

where ( )a tn  - are the expansion coefficients of the wavefunction ( )Ψ r , t  in the eigenfunctions of a certain 

operator ( of the momentum operator, for example ). In conventional scattering theory the quantities (3) are 

used as the probability fluxes. But even a brief inspection of the formulae (2) and reveals that there is a 

significant difference between the quantities Π  and W  [ see Oleinik 1985b, 1987b ]. Indeed, the 

probability flux (2) depends on the position in space of the surface S  crossed by the registered particles 

whereas the transition probability in unit time (3), often called the rate of the process, is independent of the 

coordinates. 

 To clarify the main differences between Π  and W , we dwell upon a specific quantum process. 

Consider a particle tunnelling out of the potential well by an applied field acting during the time interval 

( )0,T . Let ( ){ }tn ,rϕ  be the complete orthonormalised set of eigenfunctions of the energy operator of a 

particle in the potential well including both the continuous spectrum states (denoted hereafter by ( ) prp ,,tϕ  

being the momentum) and the discrete spectrum states. Assume that ( )t,0 rϕ  is the bound-state 

wavefunction of the particle at the initial moment of time t = 0  and ( )Ψ r,t  is the result of time evolution of 

the state ( )ϕ0 r,t  under the influence of the applied field. Expanding the wavefunction ( )Ψ r,t  at t T≥  in 

terms of the unperturbed functions ( )tn ,rϕ . 

 ( ) ( ) ( )∑ ϕ=Ψ
n

nn ttat ,, rr  (4) 

and substituting (4) into (1), we arrive at the following relationship for the probability flux 
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where V  is the volume of the region containing the potential well and bounded by the surface S . When 

deriving (5) we have made use of the Gauss theorem and the continuity equation. 

 Within the conventional theory the tunnelling transition of a particle out of the potential well is 

described in terms of the probability ionisation in unit time ( the ionisation rate) 

 ( )W
d

dt
d a t= ∫ p p

2
 (6) 

where the quantity 

 ( ) ( ) ( )∫ Ψϕ= ∗ ttdta ,, rrr pp  (7) 

represents the amplitude of the particle transition from the bound state 0ϕ  to the continuous spectrum state 

pϕ  within the time interval ( )0, t . 

 As is seen from the comparison of formulae (5) and (6), the main differences between them are as 

follows: (i) in (5) the summation is implied over all the states of continuous and discrete spectra whereas in 

(6) only the continuous spectrum states are taken into consideratrion; (ii) equation (5) allows for the 

interference between the transition amplitudes, as distinct from (6) which does not involve any interference 

terms. It should also be noted that the flux Π  vanishes at the limit of infinitely large volume ( )V → ∞ . 

Indeed, when V → ∞  the interference terms in (5) disappear due to orthogonality of the wavefunctions 

nϕ  and n′ϕ  at n n≠ ′ . By virtue of conservation in time of the normalisation integral ( )a tn
n

2∑ = constant 

and so we get Π = 0  for an arbitrary value of t . This equality results directly from the spreading in space 

of the wavepacket describing the localised particle state at the initial moment of time. 

 As was mentioned above, it is the transition probabilities in unit time W  that are used in 

conventional scattering theory as the probability fluxes Π  of scattered particles. In view of the fact that the 

quantities Π  andW  differ from each other, the following questions arise. What is the physical nature of the 

difference between Π  and W ? Which quantities provide adequate information on quantum transitions? 

What is the influence of the vacuum vibrations on physical processes? It is with the detailed consideration 

of these questions that this paper is concerned. 

 In § 2 an analysis is made of the measurements carried out in experiments on particle scattering. 

The arguments presented are in favour of the view that it is the probability fluxes rather than the transition 

probabilities in unit time that are registered in such experiments. 

 In §§ 3 and 4 the differences between the quantities Π  and W  are studied in detail in problems on 

the bound state decay under the influence of the time-varying and constant electric fields (Oleinik 1987b). 
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It is shown that the difference between them increases with decreasing duration of the electric pulse causing 

decay. When the constant electric field is weak enough, the bound-state decay disobeys the exponential 

law. The basic decay mechanism turns out to be not the tunnel transitions of the particle through the 

potential barrier leading to the exponential decay law but its quantum jumps to the continuous spectrum 

states (Oleinik and Arepjev 1984a,b). 

 In § 5 the vacuum problems of quantum theory are discussed (Oleinik 1984, 1985a,b, 1986a, 

1987b, Oleinik and Arepjev 1983a,b, 1984b). Here the model of the vacuum background is proposed as 

a medium formed by the virtual particles and as a framework in which the real quantum processes occur 

(Oleinik 1986a). A striking feature of the quantum dynamics of real microsystems is the continuous 

deformation of vacuum background in the course of time evolution. This deformation inevitably leads to a 

continuous change, from the observer’s viewpoint, in the physical properties of a quantum particle. 

Conventional scattering theory is based on the assumption that the vacuum background does not change 

with time. This assumption is violated in real physical systems and, as a result, the probability amplitudes of 

quantum transitions lose their physical meaning. All the physical information on quantum processes is 

contained in the average values of physical quantities. These conclusions follow of necessity from the 

principles upon which the quantum theory rests. 

 In § 6 the main content of the paper is summarised. 

 
2. What quantities are measured in experiments on particle scattering? 

We shall turn now to analysing the measurement process to which the particles are subjected while studying 

the quantum transitions. We do not aim to give an exhaustive explanation of this point and merely dwell 

upon the problems which may shed some light on the relationship between the probability fluxes and the 

transition probabilities in unit time. 

 Let us recall the reasoning that led to the expressions of type (3). One of the main parts of the 

measuring device being used in experiments on particle scattering is the analyser performing the spectral 

resolution of the wavefunction (Blokhintsev 1961,1987). If the diffraction grating is taken as an analyser, 

then the wavepacket is separated into the waves with different values of momentum. This corresponds to 

the expansion of type (4) where ( )tn ,rpϕ=ϕ  are the eigenfunctions of the momentum operator. Confining 

ourselves to the one-dimensional case, let us divide the region in which the momentum varies into intervals 

with the width ∆ p  and denote by pi  the momentum pertaining to the middle of the i th interval. If N  is 

the total number of measurements then, according to the statistical interpretation of quantum mechanics, the 
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number of measurements resulting in the values of momentum in the interval ( ) ( )( )p p p pi i− +∆ ∆2 2,  

will be Ni  where  

 ( )N N a t pi pi
=

2
∆  (8) 

N Ni
i
∑ = . Summing the expression (8) over all the interval we find that the total number of the particles 

observed is proportional to ( )d a tpp
2

∫ . From this one can directly obtain the relation (3) which up to a 

constant factor gives the number of particles with arbitrary values of momentum registered by a detector in 

unit time. In other words, as follows from our reasoning, the number of particles with momentum lying in the 

interval ( ) ( )( )p p p p− +∆ ∆2 2,  registered in unit time is given by 

 p
t

a
W

p ∆
∆

∆
=∆

2

 (9) 

where  ( ) ( )∆ ∆a a t a t t t tp p p

2

2

2

1

2

2 1= − = −, .  

There is an important point which is often missed in considering the measurement process. Suppose 

that the operator L  related to a physical quantity L  has the eigenfunctions ,..., 21 ϕϕ  corresponding to the 

eigenvalues L L1 2, ,..and prior to the measurement process the system in question was in a pure state 

described by the wavefunction Ψ . This may be represented in the form of a spectral resolution (4). As is 

claimed in the standard courses on quantum mechanics, if the measurement carried out on the system leads 

to the eigenvalue  Lm   of the quantity  L , then after the measurement the system will belong to a new pure 

ensemble described by the wavefunction  mϕ , that is, as a result of the measurement, a reduction of the 

wavepacket takes place: 

 ∑ ϕ→ϕ
n

mnna  (10) 

The possibility of the reduction (10) does not give rise to doubt if the eigenvalue Lm  belongs to the discrete 

spectrum. But if  Lm   corresponds to the continuous spectrum (for instance, L p pm = ,  is the moment) 

such a reduction is not possible; otherwise, after measurement the system would became unobservable 

because the state would be in the form of a monochromatic wave, which cannot be experimentally 

registered. The wavefunction may only be reduced to a wavepacket of the type 
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the width  ∆x   of the wavepacket and the magnitude of the momentum dispersion ∆p  being connected by 

the uncertainty relation  ∆ ∆p x⋅ ≥ h 2 . 

It follows from what has been said above that after measurement the particles whose momenta are 

within the interval ( ) ( )( , )p p p p− +∆ ∆2 2  should be described by the wavepacket ( )tx,ψ  (11) rather 

than by the monochromatic wave ( )txp ,ϕ . The probability flux for the wavepacket (11) is expressed by 

the equation 

 ( ) ( )tx
dx

d
tx

m

i
d ,,

2
*ψψ=Π

t

 (12) 

which is different from (9) (in one-dimensional case the probability flux density coincides with the 

probability flux). 

 On the other hand, making use of the expression (11), we find that the change in unit time of the 

probability of the particle having in whole space the momenta within the interval mentioned above is 

 ( )
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This expression coincides, as it should, with (9) at ∆ ∆p t→ →0 0, . To avoid possible misunderstanding, 

it should be noted that if the initial wavepacket ( ) ( ) ( )∫
+∞

∞−
′′ ϕ′=ψ txtapdtx pp ,,  obeys the time-dependent 

Schrödinger equation, the reduced wavepacket (11), generally speaking, does not. 

 Thus, the quantities (9) and (12) essentially differ from one another in their physical meaning: 

quantities of the type dW  yield the changes in unit time of the number of particles in whole space on the 

condition that their momenta lie within the interval of the width ∆p , whereas quantities of the type dΠ  

determine only the number of particles that cross a certain surface with the same limitation on the magnitude 

of the momentum. The position in space, the form and dimensions of the surface are determined by the 

conditions of experiment (in particular, by the relative arrangement of analyser and detector used when 

performing the measurements). The quantities dW  do not contain any information on the surface which is 
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crossed by the registered particles; in other words, these quantities do not allow for certain things are 

essential in conducting the real measurements and which have an influence on their results. 

 The difference between the probability fluxes and the transition probabilities in unit time can be 

illustrated by the following example. Let the registered particle be described by the wavefunction 
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π
= bc   is the normalisation constant,  b   and  p  are constants and the function ( )txp ,ϕ  

is defined in (11). Then the probability flux and the transition probability in unit time are expressed by the 

formulae 
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 W
d

dt
dpa p= =

−∞

+∞

∫
2

0  

Note the equality ( )Π x t, = 0  at x → ±∞  and at arbitrary value of t . As is seen from (13), the difference 

between the quantities Π  and W  may be considerable. From this it follows, in particular, that the 

substitution of the probability fluxes by the transition probabilities in unit time in formulae defining the cross 

sections of quantum processes may lead to serious errors. 

 The main difference between the probability flux and the transition probability in unit time is that the 

former has a ‘registration’ in a definite region of space (in the one-dimensional case, for instance, the 

magnitude of the flux depends on coordinates; see (13)) and the latter refers to the whole space and does 

not depend on coordinates. The quantities Π  and W  are, respectively, the spacetime characteristic of a 

process and the momentum-energy one (Bykov and Zadernovsky 1981, Bykov and Shepelev 1986). In 

accordance with the Bohr complementarity principle (Bohr 1971) the space-time and momentum-energy 

dynamical variables represent the two complementary and mutually exclusive groups of variables which 

cannot manifest themselves simultaneously in one and the same quantum ensemble. 

 In the next two sections the differences between the quantities Π  and W  are analysed in detail 

using the examples of elementary quantum processes. 

3. Bound-state decay in a time-varying electric field 
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Let us consider the decay of the bound state of a particle localised in the potential well 

 ( ) ( ) 0     , 0
0

0 >κδ
κ

−= z
m

zU   (14) 

under the influence of the time-varying electric field ( )tE  [ Oleinik 1986a, 1987b ]. The potential energy of 

the particle is given by 

( ) ( )ztetzU E−=,1  

The only energy level 
m

E
2

2
0

0

κ−=  , corresponding to the bound state in the potential well (14) is described 

by 
 ( ) ( ) ( )[ ]zz ezezz 002
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Denote by ( ) a)s,=(n     
0E zϕ  the wavefunctions relating to the continuous energy spectrum; 

 ( ) ( )[ ]{ }zzkzkzkaz
ss EE −θ−θκ−=ϕ sincos)( 0  
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The wavefunctions (15) and (16) satisfy the following conditions of completeness and orthonormalisation 
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0
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 Consider the bound-state decay by making use of the Drukarjev method [Drukarjev 1951].Let us 

suppose that prior to the moment of time 0<t  the system is in the bound state 
0Eϕ , and at t = 0  the 

electric field ( )tE , causing the decay is switched on. Denote by ( )ΨE z t
0

,  the solution of the time-

dependent Schrödinger equation in the field ( ) ( )U z U z t0 1+ , , obeying the initial condition 

 ( ) ( )zz EE 00
0, ϕ=Ψ  (18) 

By a decay we mean here the time evolution of the system in an external field; that is, the quantum transition  

( ) ( )tzz EE ,
00

Ψ→ϕ . 

 According to the conventional theory of quantum transitions, the probability amplitude of the 

transition of the system from the state  
0Eϕ  to the state 

nEϕ  by the moment  ( )0>tt  is given by 

 ( ) ( ) ( )∫
+∞

∞−→ Ψϕ= tztzdztM EEEE nn
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The total transition probability in unit time from the bound state to the continuous spectrum states (the 

ionisation rate of the potential well) is of the form 

 ( ) ( )W t
d

dt
dE M tE E

n a s
n

= →

∞

=
∫∑ 0

2

0
,

. (20) 

The probability flux density ( )j z t,  and the total probability flux ( )Π z t,  from the region ( )− +z z,  are 

determined by the expressions 

 ( ) ( ) ( )j z t
i

m
z t

d
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2 0 0
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 ( ) ( ) ( ) ( )Π z t dz div z t j z t j z t
z

z

, , , ,= ′ = − −
−

+

∫ jj  (22) 

where ( )jj == 0 0, , j . Our aim is to compare in detail the quantities ( )Π z t,   and  ( )W t  for the electric field 

( )tE . Assuming the field ( )tE  to be a small perturbation, we confine ourselves to the second-order terms. 

 With the required accuracy the wavefunction ( )ΨE z t
0

,   may be represented as follows: 

 ( ) ( ) ( ) ( ) ( )21

0000
,,, EEEE tztztz Ψ+Ψ+ϕ=Ψ  

 ( ) ( ) ( ) ( );.,, 1,0 1
1

00
tdttzitz EE

E

t

EE n

n

n
M∑ ∫ϕ−=Ψ  (23) 

 ( )( ) ( ) ( ) ( )∑ ∑∫ ∫
′

′′
′

′′ϕ−=Ψ
n n

nnnn
E E

t

EEEE

t

EE ttdtdttztz
0 2,1,0 21

2 ;,,
0

1

0
MM  

 ( ) ( ) ( ) ( )∫
+∞

∞−
′′ ′′

ϕϕ= tztzUtzdzt
nnnn EEEE ,,, 1

*
,M  (24) 

Here the symbol  
En

∑  means the integration over continuous spectrum states and the summation over 

discrete spectrum ones. Substituting the expression (23) into (19) and retaining only terms of first order in 

U 1 , we arrive at 

 ( ) ( ) .1
,0 1

0
0 na

EE

t

EE tdtitM
n

n
δ−= ∫→ M  (25) 

This allows for the fact that the interaction Hamiltonian ( )U z t1 ,  is an odd function in z  and the function 

( )zE0
ϕ  is an even one. 

 Note that the component of the probability flux density (21), equal to 

 ( ) ( )( ) ..,,
2

1*
00

cctz
dz

d
tz

m

i
EE +Ψϕ

t

 

is an even function in z , so it makes no contribution to the total flux (22). For simplicity, we calculate the 

flux ( )Π z t,  at large values of  z  such that 
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 10 >>κ z  (26) 

In this case the component of the probability flux density, equal to 
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will be exponentially small; therefore it may be neglected. As a result, we obtain the following formula for 

the total probability flux: 

 ( ) ( ) ( ) ( ) ( )Π Ψ Ψz t
i

m
z t

d
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z tE E, , ,*=

0 0

1 1

t

 (27) 

 Making use of (15), (16) and (24), we calculate the matrix element: 

 ( ) ( ) ( ) ( )[ ].exp4 0

22
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Further, from the relationships (20), (23), (25) and (28) we can infer 
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As the electric field we take 

 ( ) ,cos tdt ⋅ω⋅ω= ω∫ EE  ( )[ ] 122
00

1 −−
ω Γ+ω−ωΓπ= EE  

that is 

 ( ) tett Γ−⋅⋅ω= cos0EE  t ≥ 0  (30) 

The quantity Γ −1  may be interpreted as the duration of a pulse of electric field. 

 After performing the integration over t1  in (29), we have 
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Above we have used the notation 
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1 of κ=  ( )Γ+σω−=σ iEmf 002 2 . 

For convenience the functions  ( )tσK  and  ( )zt,σL  may be expressed in terms of the following integrals: 
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which are connected with the probability function  ( )Erfc z   by 
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For the functions  ( )tσK  and  ( )zt,σL  we have the following representations: 

 ( ) ( ) ( ) ( )[ ]{ };
12
1

202101
1

213
1

3

σσ
−

σσ −−−= fYffYfff
df

d
tK  

 (35) 

 ( ) ( ) ( ) ( )[ ]{ }., 21
1

12
1

σ
−

σσ −−
∂
∂

∂
∂= fYfYff

zf
ztL  

from which we can infer the equalities 

 ( ) ( ) ;
12

0 2
1

2
1

2
1

213
1

3
−

σσ +π−= ff
df

d
K  

 (36) 

 ( )
( )

[ ] ( )
( ) .

2
,0 1

2
1

21

12

1
2

12

fzfzfz
e

ff

fz
ee

ff
z

−

σ

−
−−

σ
σ −

π
++−

−
π

= σL  

 We confine ourselves to considering the region of parameters where 

 000 EE <<−ω<<Γ  (37) 

 ,1
2

>>
m

ft n ( ) ,2
1

nf
m

t
z << 1

2

2

<<
t

mz ( )σ= 2,1n  

For illustration the following numerical values of parameters are given: if 

 E ev0 0 5= , , Γ = −10 4
0E , ,10 0

3
00 EE −=−ω  (38) 

 Γt ≥ 1, 2
0 10=κ z  

then 

 
t f

m
21

2
10≥ ,

tf

m
1 4

2
10≥ ,

z m

t

2

2
1
4

≤ , t s≥ = ⋅− −Γ 1 1113 10, . (39) 
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Case 1.  00 E>ω . In the region of parameters (37) the following inequalities are satisfied: 

 ( )( ) ,0Re >± ±
na 0

2
Re 4 >







 πin e
m

tf
 ( )1,2;1 −=n  

 (40) 

  ( )( ) ,0Re 1,2 <± ±a 0
2

Re 421 <






 πi
e

m

tf
 

Taking into account the formula 

 ( ) ( ),zErfczErfc −π=−   0Re >z  

the asymptotic form of the probability function 

 ( )Erfc z e
z z z

z= − + −





− 2 1
2

1
4

3
83 5 ... ,  ,0Re >z 1>>z  (41) 

and the relations (34) and (35) as well, we obtain 

 ( ) ( )
( )

1
2

4
11

2
4

211

21
2
3

212
1

24
−
σ

−
−

σσ 




π+δ

−
π

−= ff
m

it
e

ff

f
t m

tf
i

K   (42) 

It is obvious that ( ) ( )tt 11 −>> KK , the first term on the right-hand side of the equality (42) being much 

greater than the second term (at Γt ≤ 1). Note that in (31) for ( )W t  there are high-frequency terms of the 

type ( )ti 02exp ω± . These terms are omitted and only the highest magnitude values are retained. The final 

result is given by 

 ( ) ( ) ( )
















 π

+ω−






π
−κ=

−

Γ−Γ−−

4
cos

22

1
8 00

214
121

2
0

3
0

2
3

2
1

tE
m

ft
eeffmetW ttE  (43) 

In the same way we calculate the function ( )zt,σL  (35) defining the wavefunction ( ) ( )ΨE z t
0

1 , . 

Omitting the intermediate calculations, we write out the final expression: 

 ( ) ( )



















π
−κ=Ψ

π
+

−

−− 42
2

3

21212
100

1

2

212
3

0 22
2,

i
t

mz
i

AiA

E
e

m

ftfz
emfetz E  (44) 

Here the following notation is introduced: 

 ( )i
tf

m
z f iA A21

21 1 22

1
2+ = −  

 ( ) ( )[ ] ,2 2

1

00001 EmztEA −ω+ω−= A t mz f2 21

1
2= −





−
Γ .  

The total probability flux is determined by 
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 ( ) ( ) { −κ=Π −−− 222
1

4
121

2
0

3
08, AA eeffmetz E  (45) 

 



















 π
−−+




 π
+−





π

−
−

42
cos

42
cos

22
1 2

121

2

1

2

3

21 2
1

t

mz
Afz

t

mz
A

m

ft
 

 As is seen from the comparison of (43) with (45), the marked difference between these formulae 

arises at 

 z f21

1
2 1≥ ,Γmz f21

1
2 1

−
≥  (46) 

At the values of parameters indicated in (38) and (39) we have 

 z f21

1
2 10= , Γmz f 21

1
2 1

2 10

−
= . 

The formula (45) also remains approximately valid when, instead of the last two inequalities (37), the 

following inequalities are fulfilled: 

 2
1

21f
m

t
z < , ( ) 11,2 >>±a   

Then the quantity A2  may be of the order of 1  while  1>>Γt  ( that is e A− ≈2 1, 1<<Γ− te  ). In this case 

the difference between the quantities  ( )W t  and ( )Π z t,   will be particulary substantial. Thus, with 

increasing Γ , that is with decreasing duration of the electric pulse, the difference between ( )W t  and  

( )Π z t,   becomes greater. 

Case 2. 00 E<ω . Now in the region of parameters (37) the following inequalities are satisfied: 

 ( )( ) 0Re >± ±
na , 0

2
Re 4 >







 π
i

n e
m

tf
  at all n  

From (34), (35) and (41) we infer 

 ( ) 1
2

4
1

2

3

24
1

2
1 −

σ
−

−

σ 





π= ff

m

it
tK  (47) 

Retaining in (31) again only the highest magnitude terms, we arrive at the equality 

( ) ( ) ( )
















 π

+ω−






π
−Γκ−=

−

Γ−−Γ−−

4
cos

22

1
8 00

2

3

21
2121

4
1

2
0

3
0

2
1

2
1

tE
m

ft
fefmemfetW ttE (48) 

The analogous expression for the probability flux is of the form 

 ( ) ( ) { −Γκ−=Π −−−− 22
1

2
21

4
1

2
0

3
08, BB efmemfetz E  (49) 
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


















 π
−−+




 π
+−






π
−

−

42
cos

42
cos

22

1 2

121

2

1

2

3

21
21

2
1

2
1

t

mz
Bfz

t

mz
B

m

ft
f  

The following notation is used here: 

 ( )i
tf

m
z f iB B21

21 1 22

1
2− = −  

 ( ) ;2
1

21001

−Γ−ω−= fzmtEB  B t z f2 21

1
2= +Γ  

From the formulae given above it follows that the marked difference between ( )W t  and ( )Π z t,  

arises, as in case 1, when the conditions (46) are fulfilled. The first terms on the right-hand sides of (48) 

and (49) differ by the factor  [ ]exp − 2 21

1
2

z f , which can be very small (at the values of parameters (38) 

and (39)  [ ]exp ,− = ⋅ −2 18 1021
3

1
2

z f ). 

Thus, in a rather wide region of parameters of the problem the probability fluxes differ appreciably 

from the transition probabilities in unit time. However, there are also regions of parameters where the 

quantities under study do not practically differ from each other. 

 
4. Bound-state decay in a constant electric field 

In this section we consider the particle escaping from the delta function potential well (14) under the action 

of the constant electric field E  (Oleinik 1987a). We follow the same statement of the physical problem as 

in the previous section but the electric field is taken into consideration precisely, without using perturbation 

theory (Oleinik and Arepjev 1984a). 

Denote by  ( )zEφ    the energy eigenfunctions of the electron in the potential field 

 ( ) ( ) zez
m

zU E−δ
κ

−= 0  (50)  

and by  ( )ΨE z t
0

,   the solution of the Schrödinger equation in the field (50) satisfying the initial condition 

(18). The wavefunction  ( )ΨE z t
0

,   may be expended in the functions  ( )zEφ  : 

 ( ) ( )∫
+∞

∞−

−φ=Ψ iEt
EEEE ezdEctz

00
,  (51) 

Here  cEE0
 are the constant coefficients defined by the initial condition (18): 

 ( ) ( )∫
+∞

∞−
ϕφ= zzdzc EEEE 00

*  (52) 
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Making use of the condition of completeness (17), the formula (20) for the ionisation probability may be 

transformed as follows: 

 ( ) ( ) 2

0
t

dt

d
tW EM−=  

 (53) 

 ( ) ( ) ( )∫
+∞

∞−
Ψϕ= tztzdzt EEE ,,

000

*M  

Substituting the representation (51) into the last equation, we obtain 

 ( ) ( )∫
+∞

∞−

−−= tEEi
EEE eCdEt 0

00

2
M  (54) 

The total probability flux can be worked out from (21), (22) and (51). The wavefunction ( )φE z  is 

determined by 

 ( ) ( ) ( ) ( ) ( )[ ] ( ){ }zBibAiazAiz EEEE θξ−+ξ−+−θξ−α=φ  

 ( ) ( ),21 00 ξ−ξ−βπ−= BiAia E  ( ),2 0
2 ξ−π= AibE  

 ( ) ;2
1221

0

2 −− +βκ=α EEE bam  (55) 

 ;0
1

0 ξ+βκ=ξ − z  ;
0

2
0 E

E
β=ξ  

Here β  is a dimensionless parameter defined by the formula  ( ) 3
1

20
−κ=β hEme (in ordinary units); 

( )ξ−Ai  and ( )ξ−Bi  are Airy functions. 

The function ( )tE0
M  (54) can be rewritten in the form 

 ( ) ( ) ( )∫
+∞

∞−

−− += 1222

0 xx

ix

E baxPedxt äM  (56) 

where  a ax E E x E
=

= 0
; b bx E E x E

=
= 0

;  the function  ( )P x   is determined by 

 







α





β

κ= −

0

*
2

1

0
0 2

2
1

0 E

E
P

m
EC EEE  (57) 

Here and below the dimensionless time  htE0=T   and coordinate  hz0κ=Z are introduced. In 

terms of these variables the ionisation probability in unit time and the probability flux density are of the form 

 ( ) ( ),~0 TW
E

tW
h

=  ( ) ( ),,~, 0 TZj
E

tzj
h

=  

 ( ) ( ) 2

0

~
t

d

d
W EM

T
T −=  (58) 
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 ( ) ( ) ( ),,,,~ *
00

TTT ZZZ EE
dz

d
ij ΨΨ=

t

 

 ( ) ( )( )∫
+∞

∞−

−− ×+β=Ψ 1222
1

0
, xx

ix
E baxPedx TTZ  

 ( ) ( ) ( ) ( )[ ] ( ){ },zBibAiazAi xx θξ−+ξ−+−θξ−×  x21 β+β≡ξ −Z  

From (52), (55) and (57) the following representations may be derived: 

 ( ) ( ) ( )[ ],002
3 β+ββ= βξβξ− FeGexP  

 ( ) ( ) ( )[ ],
0

∫
∞

ξ

βξ− ξ−+ξ−ξ=β BibAiaedF xx  (59) 

 ( ) ( ),
0

∫
ξ

∞−

βξ ξ−ξ=β AiedG  x2
0 β=ξ  

The quantities  ( )βF   and  ( )βG  being considered as functions of β  at fixed values of xa,0ξ and bx  obey 

the first-order differential equations 

 ( ) ( )[ ]−ξ−′+ξ−′=β−
β

βξ−
00

2 0 iBbiAaeF
d

dF
xx  

 ( ) ( )[ ],00
0 ξ−+ξ−β− βξ− BibAiae xx  

 ( ) ( )[ ]00
2 0 ξ−β+ξ−′=β+

β
βξ AiiAeG

d

dG
 

from which the following representations can be inferred: 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ),2 10000
0 xYxYAixYiAFe +++βξ −βξ−−ξ−′−=β  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),
0

03

3

0
1000∫

∞

ξ−

−−βξ−−βξ− ξ−+ξ−′+ξξ=β
β

xYAixYiAAideGe  

 ( )( ) ( ),
1

1 3

∫
∞

β−++ β= tqnn
n

xetdtxY  

 ( )( ) ( ),
1

0

1 3

∫ β+− β= tqnn

n
xetdtxY ( ) ( ) ( )q t t x tx = − + −1

3
3 1 1  

 We shall perform the further calculations under the assumption that the inequality 

 1>>β  (60) 

is satisfied. The existence of the large parameter  ( )β   permits us to use effectively the stationary phase 

method (Erdelyi 1962) and the method of integration by parts. The corresponding calculations are quite 
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elementary though rather bulky. So we omit the intermediate calculations and write out only the final 

formula: 

( ) ( )( ) ( )3
13

2
1

2
3

1 +β−−−β= x
exxP  at ( )β−−≤ 11x  

 ( )( )−−β−


























β

+β−
′+
′−+

π
= 2

33
3
23 exp

1
1exp

2
2

2
4

1
xq

x

x
x  

 ( )[ ] ( )( );exp1 23
3
2

4
1 2

3
2

1

−− +−β−φ−β′− axax  (61) 

 at  ;1
β
′

+−= x
x  ′ ≤x 1,  2

1

2
β

′
=−

x
a  

 ( ) ( ) ( )( ) ( )( )2
3

2
1

4
1

2
1 3

3
236 exp112 xxxx −β−−−+−βπ= −−−−  

 at  
β

−≤≤
β

+− 11
1 x  

 ( ) ( ) ( )[ ]00
314 2

7 ξ−β+ξ−′+β= −− AiiAx  at ,
1
β

−>x x2
0 β=ξ  

With the aid of (56), (58) and (61) one can readily work out the quantities  ( )TW
~   and  ( )T,~

Zj . Note 

that the function  ( )a bx x
2 2 1

+
−

 has a pole at 

 ( ),1 6
16
5

0 Γ±β+= − iEE  ( )3
3
4exp β−=Γ  (62) 

The formula (62) gives the energy and the damping of the quasistationary level arising in the potential well 

(14) under the influence of an electric field. Due to the existence of the pole the function ( )a bx x
2 2 1

+
−

 

involved in the integrands of the expressions (56) and (58) has the maximum at 0
6

16
51 xx ≡β−−= − . The 

width of the maximum ∆  defined by the equality  

 ( ) ( ) 2122
2
1122 2max

0

−−

∆+=

−
Γ=+=+ xx

xx
xx baba  

coincides with the dimensionless damping: ∆ Γ= .In the region of β   (60) the height of the maximum is 

rather considerable, but the width is small. Further, to obtain the numerical estimates we put: 

 E ev0 05= . ,  cmvx 5105 ⋅⋅=E  (63) 

Then  3
1

31,3 −⋅=β x   and we have the following table. 

 
x β  3

3
4 β  Γ  

1 3.31 48.35 10-21 
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2 2.63 24.18 3.2×10-11 

4 2.08 12.09 5.6×10-6 

6 1.82 8.06 3.2×10-4 

 

While calculating ( )tE0
M   (56) let us first take into account the contribution to the integral made by 

a vicinity of the resonance point  x x= 0 : 

 ( ) ( ) =+∫
δ+

δ−

−−
0

0

1222
x

x

xx
ix baxPedx T  

 ( )












 δ+π−

δ
δΓπ−= −Γ−− T

T

T
TTT Siee ix

2
cos

2 10  (64) 

where ( )Si x dt
t

t

x

= ∫
sin

0

. In deriving this formula we have assumed that Γ>>β≈δ −4 , and have taken 

into account the equality 

 ( ) ( )3
3
2exp

2

1 β−
π

=xP  

which is valid, according to (61), in the close vicinity of the resonance point. If only the contribution of the 

resonance point is allowed for, then for ionisation probability we find 

 ( ) ( )TT Γ−Γ≈ 2exp2~
W  (65) 

By this formula the so-called exponential decay is described (Baz et al 1971). According to data given in 

the table, at x = 1   one act of ionisation occurs within the period of time  ( )h E s0

1 610Γ − −≈  and thus  

( ) 1610~ −−≈ sW T . 

With the aid of (61) one can readily ascertain the contribution to the integral (56) made by the 

regions  ( )β−≤≤δ+ 10 xx   and  δ−≤ 0xx   to be exponentially small. Thus, there remains only the 

contribution made by the vicinity of the resonance point  x x= 0   and by the region  ( )β−≥ 1x . In view of 

(61) we obtain such an expression (assuming the inequality Γ>>δ  ) to be satisfied, we retain only the first 

term on the right-hand side of (64): 

 ( ) ( ) 




 ∞
β

−+Γ−−= ,
1

exp 00
KixtE TTM  (66) 

 ( ) ( ) ( ) ( )[ ] ( )∫
−−−− +ξ−β+ξ−′+β=

b

a

xx

ix baAiiAxedxbaK
1222

00
67 116, T  
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Estimate the quantity  ( )tE0
M   at large values of  ( )2

5β≥TT .In this case the integrand in (66) is a 

high-frequency function, and so the main contribution to the integral is made by the integration limits and 

stationary points, the contribution of the latter being more considerable. Separate from (66) the integral  

( )∞β,1K   and consider the following factor of its integrand: 

 
( ) ( )[ ] =

+
ξ−β+ξ−′

22

2
00

xx ba

AiiA
 

 
( ) ( )( )

( ) ( )( )
=

ζ++ζ−
ζ−ζ++ζ−

π
β=

2sin122cos21

2sin2sin112cos21
2 2

1

2
1

2
1

xx

xxx
 (67) 

 ( ) ;
2

22
1

2
1

∑
+∞

−∞=

ζ

π
β=

s

si
s exD

x
 .2

33
3
2 xβ=ζ  

Here we have used the asymptotic form of the Airy function and performed the Fourier transformation. The 

expansion coefficients in (67) are of the form 

 ( )

( )

( )















=

−−=+−

=−

= +−

+−

0;1

,......2,1;
2

,.....2,1;
2

1

1

s

six
i

six
i

xD
s

s

s  

Substituting (67) into the formula for  ( )∞β,1K , we obtain 

 ( ) ( ) ( ) ( );
1

16,1
2

1
62

2
61 ∑ ∫

+∞

−∞=

∞

β

ϕ−−

− +
βπ=∞β

s

xi
s

sexD
x

x
dxK  

 ( ) 33
3
42 xsxxs β+−=ϕ T  (68) 

In the region  ∞<≤β− x2
1

  the function  ( )xsϕ   has the stationary points  sxsx ≡β= 32T , for those 

values  s = 1 2, , .. . ,  at which  2
1−β=sx , (that is , at  2

5
2 β> sT ). Consider such values of  T  for which 

the conditions 2
5

2
5

42 β<<β T ,are fulfilled, provided that 14,2 2
5

2
5 >>β−β− TT . Then there is the 

only stationary point  3
1 2β== Txx   on the path of integration. Using the stationary phase method, we 

arrive at 

 ( ) ( )










 π
−








β

−+βπ−=∞β
−−−−

423
exp18,1

2

3

62
1

2
1

6 2
1

2
1

i
i

xxK
T

TT  (69) 

With the integral  ( )β+β− 1,1K   there are no stationary points on the integration path, and so this integral 

may be neglected. From (58), (66) and (69) we now infer 
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 ( ) ;
423

1
1cos2~

2

321
2











 π−




















β

+++Γ= Γ− T
TT ^ LLeW T  

 
( )

( ) ;
1

17
192

132
1

2
1

4
12121

1
x

xx
L

+

−βπ= −−− T  (70) 

 ( )
TT Γ−−−−

+
βπ−= e

x

x
L

62
1

2
16

2
1

16 2
1

2
1

 

The first term on the right-hand side of (70) allows for the contribution of the resonance point and gives the 

law of exponential decay. The third term is a result of interference between the resonance term and the 

non-exponential one in the matrix element (66). The values of all the three terms in (70) at  

( )131.3,3 2
5 <<Γ=ββ= TT  are given below: 

 2 2 10 2 1Γ = × − ;  L1

1 12 10= × − ;  L2

53 3 10= × −.  (71) 

As is seen from (71), the contribution of the resonance point to the ionisation probability turns out 

to be very small. Physically, this means that in the region of β  under study  ( 1>>β )  the direct tunnel 

transition of the particle from the quasistationary level in the potential well through the barrier is hardly 

probable. The main role is played by the processes indicated by Oleinik and Arepjev (1984a) - the 

quantum jumps of particles under the influence of the electric field from the quasistationary level to 

continuous spectrum states. These jumps do lead to the non-exponential law of decay. 

Let us turn to calculating the probability flux density. We limit ourselves to consideration of the 

region  0fZ . The main contribution to the wavefunction  ( )T,
0

ZEΨ  (58) are made by a vicinity of the 

resonance point  x x= 0   and by the region  β−≥ 1x . Denoting these contributions by ( )T,1 ZΨ  and 

( )T,2 ZΨ , respectively, we have 

 ( ) ( ) ( )TTT ,,, 210
ZZZ Ψ+Ψ=ΨE  

The probability flux density is defined as follows: 

 ( ) ( ) ( )TTT ,~,~,~
10 ZZZ jjj +=  

 ( ) ( ) ( )∑
=

ΨΨ=
2,1

*
0 ,,,~

n
nn

dz

d
ij TTT ZZZ

t

 (72) 

 ( ) ( ) ( ) ..,,,~ *
121 cc

dz

d
ij +ΨΨ= TTT ZZZ

t

 

The quantity  ~
j1   will be referred to as the interference flux. The component  ( )T,1 ZΨ   of the 

wavefunction is of the form 
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 ( ) ( ) ( ) ( ) ( )[ ];~~
exp, 3

3
2

1
2

1

ξ−+ξ−Γ−+β−πβ=Ψ iAiBii TTTZ  (73) 

 21~ β−β=ξ −Z  

Making use of (73) we derive the law of exponential decay (see (70)): 

 ( ) ( ) TTT Γ−Γ=ΨΨ 2*
11 2,, e

dz

d
i ZZ

t

 (74) 

The last quantity turns out to be exponentially small; it may be neglected. By virtue of (58) and (73) the  

flux components  ~
j 0   and  ~

j1   may be transformed into the form 

 ( ) ( ) ( )TTT ,,2,~
0 ZZZ cs

dz

d
j ΨΨ=

t

 

 ( ) ( )[ ] ( )( ) ×++βπ= ∫
∞

β−

−β−

−1

3
3
2

2
1 122

1 1sin2,~
xx baxPxdxej TTZ  (75) 

 ( ) ( )[ ] ( )ξ−ξ−+ξ−× ~
Bi

dz

d
BibAia xx

t

 

where the following notation is introduced: 

 ( ) ( ){ } { }∫
∞

β− −

×β=ΨΨ
1

2
1

sin;cos,;, TTTT xxdxsc ZZ  (76) 

 ( )( ) ( ) ( )[ ].122 ξ−+ξ−+× −
BibAiabaxP xxxx  

While calculating the probability flux density, we shall consider such distances  Z  that 

121 >>β+β=ξ − xZ . In this case we can take advantage of the asymptotic form of the Airy functions. 

Then in the integrand (76) there arise the rapidly oscillating factors of the type ( )( )xi ±ϕexp  where 

 ( ) ( ) 2
3

21
3
2 xxx β+β±=ϕ −

± ZT  

The function  ( )x+ϕ   has no stationary point, but the function  ( )x−ϕ   has one at 

 .
1 *

03

2

3 xx ≡





−

ββ
= Z

T
 

Assume that  2,2
5 β≈β≈ ZT . Then  β≤ 1*

0x   and  1>>β≈ξ  and so the use of the asymptotic form of 

the Airy functions is valid. Using the stationary phase method in calculating the function (76), we obtain 

 ( ) ( ) ( );2,~ *
0

21226
0 *

0
*
0

xPbaj
xx

−− +β= TTZ  (77) 

 ( ) ( ) ( ) ( )[ ],14 00
32

7 ξ−β+ξ−′+β= −− AiiAxxP  .2
0 xβ=ξ  
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The formula for the interference flux ( )T,~
1 Zj  can be inferred analogously. Assuming that 1~, >>ξξ , we 

arrive at the relation 

 ( ) ( ) ( )( ) ×+β−β−= −− 122*
0

3
3
23

1 *
0

*
0

2
1

exp2,~
xx

baxPj TTZ  

 ( )( ) ( )( )[ ]






−ϕ+−ϕ+




 π+ξ





ξ
ξ× −−

*
0

*
03

2

41

cossin
4

~
sin

~
*
0

*
0

2
3

xbxa
xx

TT  (78) 

 ( )( ) ( )( )[ ] .sincos
4

~cos
~

*
0

*
03

2

41

*
0

*
0

2
3







ϕ++ϕ+




 π+ξ





ξ
ξ− −−

−

xbxa
xx

TT  

The numerical estimate for the probability flux density is given at  31.3,3 2
5 =ββ=T . According 

to (77) the maximum of the probability flux is reached at  x0 0* = , that is at 232 90 β=→=−β ZZT   ( 

1~, >>ξξ  ). So we have 

 ~ ,j 0

510≅ −  ~
j 1

1 410≈ −  (79) 

From comparing (79) with (70) and (71) it is seen that the probability flux density turns out to be much 

greater in magnitude than the transition probability in unit time. It should be pointed out that in the 

calculations above we have used no expansions in perturbation. 

 As was explained in § 2, in the experiments on particle scattering the particle fluxes are registered. 

Therefore, it is natural to describe quantum processes in terms of the probability fluxes. Attention should be 

drawn to the following point. The calculation given above of the ionisation probability flux confirms the 

conclusion made earlier by virtue of the ionisation probability in unit time; namely, quantum jumps of a 

particle from the quasistationary states to those of the continuous spectrum are the main mechanism of 

ionisation at  1>>β . However, the quantitative characteristics of the ionisation process obtained as a result 

of both calculations turn out to be quite different.  

5. Quantum processes and vacuum vibrations 

According to the conventional theory of quantum fields one of the main factors influencing physical 

properties and the behaviour of a microsystem is the continuous interaction of real particles with the 

vacuum ‘as with such a type of physical media in which these particles move’ (Bogoliubov and Shirkov 

1976). Any real experimentally observed processes are considered to be accompanied by non-observable 

virtual processes due to the interaction of the microsystem with vacuum vibrations. 

 Let us trace the way of introducing the main concepts of quantum field theory by using as an 

example the simplest model - the electron-positron field interacting with the external field ( )A
ext

x  that acts 
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only during the time interval ( )T T0 1, . Denote by ( ) ( ){ }xn
±ϕ  the complete orthonormalised set of functions 

obeying the Dirac equation for a free electron (n  is the quantum number; the signs + and - refer to the 

positive-frequency and negative -frequency states, respectively; ( )x t= , r . By the superposition principle 

an arbitrary solution of Dirac’s equation may be represented as follows: 

( ) ( ) ( )( )[ ] ( )xxbxa
n

nnnn 0
* Ψ≡ϕ+ϕ∑ −+  

a
n
 and b

n
 being the constant coefficients. The transition to the second quantisation theory consists of 

replacing the coefficients a
n
 and b

n
 by the operators of the second quantisation $a

n
 and $b

n
 to satisfy the 

ordinary anticommutation relations and to act in some space of state vectors. The quantity 

 ( ) ( )( ) ( ) ( )[ ]∑ −+ ϕ+ϕ=Ψ
n

nnnn xbxax ˆˆˆ
0  (80) 

obtained in this way is called the free electron-positron field operator in the Heisenberg picture. The space 

of state vectors may be generated by operating the creation operators a
n

+  and b
n

+  on the vacuum ket 

vector 0  defined by the equalities a b
n n

0 0 0= =  at any n . Here and below, the sign ^ above the 

operators is omitted. These relationships together with the conjugate ones 0 0 0a b
n n

+ += =  and the 

normalisation condition 0 0 1=  define the vacuum of the free electron-positron 

 To clarify the concept of a virtual particle, let us turn to the field operator ( )Ψ0 x . The second 

quantisation operators a
n
 and b

n

+  involved in (80) may correspond both to the real observable particles 

and to the virtual non-observable ones depending on the state of the electron-positron field. For example, if 

the state is described by the ket vector 

 0+=φ ii a  (81) 

then the wavefunction ( )xn
+ϕ  at n i= in (80) describes the real particle state and all the rest of 

wavefunctions should be attributed to the virtual states. Thus, we arrive at the notion of the virtual state as 

vacancy (an empty state) in the space of one-particle states which may be occupied by a real physical 

particle (Oleinik 1986a). As is seen from (80), the virtual states (or particles) as well as the real particles 

are described by the same quantum numbers; the wavefunctions of real and virtual particles are included in 

(80) on equal grounds. The physical medium consisting of virtual particles will be called the vacuum 

background. An empty lecture hall with a great number of desks may serve as an image of the vacuum 

background. The empty seats at the desks correspond to the vacancies in the electron-positron field (the 

virtual particles0 and the student at the desk is like a real particle that occupies the corresponding vacancy. 
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Thus, the vacuum background is a set of vacancies which are described by certain wavefunctions and can 

be occupied by real particles. 

 Consider now the time evolution of the electron-positron field under the influence of external field. 

The field operator ( )Ψ x  corresponding to particles in the external field ( )A x
ext

 is to satisfy the Dirac 

equation in this field and the initial condition 

 ( ) ( )Ψ Ψx x= 0  at t T= 0  (82) 

From this we can infer the representation 

 ( ) ( ) ( ) ( ) ( )[ ]∑ −++ ψ+ψ=Ψ
n

nnnn xbxax  (83) 

where ( )( )xn
±ψ  are the solutions of Dirac’s equation in the field ( )A x

ext
 obeying the initial condition 

 ( ) ( ) ( ) ( )xx nn
±± ϕ=ψ  at t T= 0  (84) 

From (80) and (83) it is seen that the time evolution ( ) ( )Ψ Ψ0 x x→  may be treated as a ‘dressing’ of the 

‘bare’ states ( )( )xn
±ϕ , both real and virtual, in the external field. The states of both real and virtual ‘dressed’ 

particles in the external field at a moment of time ( )0Ttt >  are described by the wavefunctions ( )( )xn
±ψ  

distinct from the free wavefunctions ( )( )xn
±ϕ . This means that the time evolution of the system in external 

field leads to the deformation of the vacuum background. The virtual particles existing in vacuum before 

and after the switching on a perturbation differ from each other by their properties. If we recall our visual 

comparison of the vacuum background with the empty lecture hall, we may say that under the influence of 

an applied field the empty seats at desks are deformed. The point is that the processes of ‘dressing’ of 

virtual states take place irrespective of whether real particles are present in the system under study or not. 

 The processes responsible for the vacuum background distortions which inevitably occur in any 

microsystem subjected to a perturbation may be accompanied by the creation and annihilation of real 

electron-positron pairs. In these processes the virtual states are converted into the real ones and vice versa. 

Let us consider them in more detail following the paper by Oleinik (1985b). Introduce the subspace ( )M 0

+  

and ( )M 0

−  which are orthogonal to each other and are formed by linear combinations of the functions ( )+ϕ n  

and ( )−ϕ n , respectively. These subspaces describe the upper and lower continua. The lower continuum is 

often called the Dirac sea of ‘bare’ particles. The time evolution of one-particle states ( ) ( )( )xnn
±± ψ→ϕ  

caused by an external field leads to the evolution of subspaces ( )M 0

± : 

( ) ( ) ( )M M t0

± ±→ . 



 25

Here ( ) ( )M t+  and ( ) ( )M t−  are the subspaces whose basis vectors are the functions ( )( )xn
+ψ  and 

( )( )xn
−ψ , respectively. The subspace ( ) ( )M t−  describes at the moment t  of an electron-positron pair in 

the external field should be connected with the formation of a hole in Dirac’s of ‘dressed’ rather than ‘bare’ 

particles. To obtain the criterion for real pair creation, let us introduce the current density operator 

( ) ( ) ( ) ( ) ( )[ ].2
1 xxxxxj T ΨγΨ−ΨγΨ= µµµ  

The mean value of this operator in the vacuum state is given by 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ).,00 xxxxxxxj vacvacn
n n

nnn jρ≡ϕγϕ−ψγψ= −
µ

−−
µ

−
µ ∑ ∑ (85) 

The creation of a hole in the subspace ( ) ( )M t− , that is in Dirac’s sea of ‘dressed’ particles, results in the 

change of the particle density ( )xvacρ  therein. Consequently, the condition for the real pair creation at a 

point x  should be expressed by 

 
( )

0≠
∂

ρ∂
t

xvac  (86) 

which is equivalent, by the continuity equation, to 

 ( )div x
v a c

j ≠ 0  (87) 

 The vacuum current ( )xjvac µ,  (85) may be represented in the form 

( ) ( )( ) ( )( )xJxJxjvac

−
µ

+
µµ +=,  

 ( ) ( ) ( )( ) ( ) ( ).
2
1 ∑ ±

µ
±±

µ ψγψ=
n

nn xxxJ m  (88) 

It is natural to treat the quantities ( )( )xJ ±
µ  as the current induced by applied field in the subspace ( ) ( )M t± . 

One can show that if the initial condition (84) is imposed on the functions ( )±ψ n  at a finite moment of time 

T0 , the following equality is fulfilled: 

 ( ) ( ) ( ) ( )xJxJ −
µ

+
µ =  (89) 

It follows from (89) that the appearance of the vacuum current source in ( ) ( )M t−  inevitably entails the 

formation of the current source in ( ) ( )M t+ . Therefore the creation of real pairs may be associated with the 

appearance of sources of the vectors ( ) ( )J + x  and ( ) ( )J − x . One can readily obtain the following formulae 

for the changes in the electric charge Qδ  and in the number of real particles Nδ  in volume dr  in unit time: 

( )( ) ( )( )( ) 0=−=δ +− rJJ dxdivexdiveQ  

( ) ( ) ( )( )( ) ( ) rJrJJ dxdivdxdivxdivN vac=+=δ +−  
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as is seen from these expression, the interpretation proposed above does not lead to inconsistencies. 

 The validity of the criterion (87) for the creation and annihilation of a real electron-positron pairs is 

also confirmed by simple qualitative considerations (Oleinik 1984, 1985b). Pair creation is tunnelling of the 

second type by which the particle with negative energy is knocked out of the potential well. The role of the 

latter is played by the Dirac sea. The condition for tunnelling of the second type is given by 

 ( )div tj r , ≠ 0  (90) 

where ( )j r , t  is the probability flux density. If the field is in vacuum state, the only physical quantities we 

have for describing such a state are the quantities of the type 0 0A  where A  is the operator of physical 

quantity. Therefore the condition for the creation or annihilation of the pair should be expressed by the 

inequality (90) in which ( )j r , t  is replaced by ( )j
v a c

x . 

 It is obvious that if the transition ( ) ( ) ( )M M0

− −→ t  consists only in distorting the lower continuum 

as a whole and is not accompanied by the appearance of sources or sinks of the vector ( ) ( )J − x  in it, then 

the creation or annihilation of a real pair does not occur. In this case during time evolution of a microsystem 

the free virtual states ( )( )xn
±ϕ  are transformed into the ‘dressed’ virtual states ( )( )xn

±ψ . If, for example, the 

initial state is described by the ket vector (81), the wavefunction ( )( )xi
+ψ  describes the state of the real 

‘dressed’ particles and all the rest of the ( )( )xn
±ψ  functions involved in (83) refer to ‘dressed’ virtual states. 

 Consider in greater detail the process of vacuum deformation. At t T≥ 1  the functions ( )( )xn
±ψ  may 

be expanded in free wavefunctions: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )[ ] ( )( )xxxx n

m

mnmmnmn
±−±+±± ϕ′≡ϕβ+ϕα=ψ ∑  (91) 

where ( )±α nm  and ( )±βnm  are constant coefficients. By ( )′Ψ0 x  we denote the operator ( )Ψ x  at t T≥ 1 . In 

virtue of (91) the operator ( )′Ψ0 x  obeys the Dirac equation for free particles. Thus, the operators ( )Ψ0 x  

and ( )′Ψ0 x  describe the fields of free particles, but these fields essentially differ from each other. In fact, 

from the equalities 

 ( ) ( ) ( )xax nn

++ ϕ=Ψ 00 0  ( ) ( ) ( )xax nn

++ ϕ′=Ψ′ 00 0  

it is seen that the particles described by the field operator ( )Ψ0 x  are in stationary states and the particle 

states described by ( )′Ψ0 x  are essentially non-stationary. Denote by ( ) ( ) ( )xxx int0 HHH +=  the one-

particle Hamiltonian of the particle in the field ( )A
ext

x  consisting of the free Hamiltonian ( )x0H  and 

interaction Hamiltonian ( )xintH . The Hamiltonian operators of free particles and of particles in the external 

field are given by the formulae 
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( ) ( ) ( ) ( )∑∫ +++ +ε=ΨΨ=
n

nnnnn bbaaxxxdH :: 0000 Hr  

 (92) 
( ) ( ) ( ) ( ) ( ) ( )∫ ΨΨ= ++ tSxxxdtStH :: 00 Hr  

where :  : is the operator of normal ordering, ( )S t  is the operator of time evolution of electrons and 

positrons under the action of the field ( )A
ext

x  and nε  is the free particle energy. At t T≥ 1  the operator 

( )H t  may be represented in the form 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 00 HtbtbtatatSHtStH
n

nnnnn
′≡+ε== ∑ +++  

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }( ).;;; ∑ −−++++ βα+βα=
k

knknkknknknn batbta  

The latter equalities are easily obtained with the aid of the relation ( ) ( ) ( ) ( )Ψ Ψx S t x S t= +
0  and equalities 

(80), (83) and (91). The operators H 0  and ′H 0  are the operators of the total energy of the free electron-

positron field prior to its interaction with the external field and after this interaction, respectively. We 

calculate the mean value of the energy in the vacuum state ( ) ( )0 0 0H t E t≡  at moments t T= 0  and 

t T= 1 : 

 ( )E T0 0 0=  ( ) ( ) ( )∑ ∑ >


 β+αε= +−

n k

knknnTE 0
22

10  (93) 

If there is no real pair creation, that is the condition 

 ( )div x
v a c

j = 0  (94) 

is fulfilled, the quantities ( )E T0 0  and ( )E T0 1  represent the energy of the vacuum background in the ground 

state and the energy of the deformed vacuum background. Thus, the quantity ( )E T0 1  is the energy 

extracted by virtual particles from the external field and stored in the vacuum background. With the change 

in intensity of the field ( )A
ext

x , we obtain the energy band formed by levels relating to the vacuum 

background. 

 From the above it follows that the vacuum background inevitably appears in any quantum system 

investigated within the theory of second quantisation. The actual use of this theory means that the virtual 

particles and the vacuum background as a medium which the real particles ‘inhabit’ are taken into 

consideration. The Hamiltonian operator ( )H t  (see(92)) expressed through the field operators 

automatically allows for the influence of the vacuum background on real particles. 
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 Note that if there is no Dirac sea in the system under study, the vacuum background state is 

degenerate. Indeed, if in (80),(83) and (91) the wavefunctions ( )( )xn
−ϕ  and ( )( )xn

−ψ  are neglected, one will 

obtain ( ) ( )E T E T0 0 0 1= , although ( ) ( )′ ≠Ψ Ψ0 0x x , ′ ≠H H0 0 . 

 Within conventional scattering theory the quantity ( ) 2+α im  (see (91)) is interpreted as the transition 

probability of a real particle from the state ( )( )xi
+ϕ  at the moment t T= 0  to the state ( )( )xm

+ϕ  by the 

moment t T= 1  under the action of a perturbation. Because of the vacuum background deformation this 

interpretation turns out to be wrong. Indeed, let the initial state be described by the ket vector (81) and, 

additionally, let the condition (94) be valid. Then, in accordance with what has been said above, the time 

evolution of the field occurs in such a way that at the moment t T= 1  the wavefunctions ( )( )xi
+ϕ′  describes 

the state of the real ‘dressed’ electron and all the rest of the ( )( )xn
±ϕ′  functions involved in (83) refer to 

‘dressed’ virtual states. But the wavefunction ( )( )xm
+ϕ  taken at t T= 1  may be represented, as is seen from 

(91), in the form of superposition of both real ( ( )( )xi
+ϕ′ ) and virtual ( ( )( )xn

+ϕ′  for n i≠  and ( )( )xi
−ϕ′  for 

any n ) ‘dressed’ states. From this it follows that the quantity ( ) 2+α im  is the population of the state m  

relating to the superposition of both real and virtual ‘dressed’ states. Therefore, the quantity ( )+α im  cannot be 

interpreted as the probability amplitude of the real physical process. This conclusion may be also drawn 

from comparing the Klein mechanism of vacuum polarisation with the non-stationary mechanism of pair 

creation predicted by Oleinik and Arepjev (1984b). 

 It should be stressed that when determining by virtue of (80) the field operator expansion at the 

initial moment t T= 0 , we thereby fix the corpuscular interpretation of quantum theory. Because of the 

vacuum background deformation the ‘dressed’ states which may correspond to observable states of 

particles are described after switching off the interaction not by the wavefunctions ( )( )xn
±ϕ  but by the 

wavepackets ( )( )xn
±ϕ  (91). It is evident that the use of an analyser resolving the final state of a particle into 

initial states ( )( )xn
±ϕ  makes no physical sense. The vacuum background may be treated as a scene on 

which the real quantum events take place and which is continuously deformed by perturbation. The basis of 

one-particle states ( )( )xn
±ϕ  at the moment t T= 0  does not coincide with the basis ( )( )xn

±ϕ′  referred to the 

moment t T= 1 ; as a result ( ) ( )′ ≠Ψ Ψ0 0x x . This means that the standpoint of an observer on the physical 

properties of quantum state continuously varies with time. 
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 Due to the vacuum background deformation the transition probabilities in unit time lose their 

physical meaning. The physical information on quantum dynamics is contained in the mean values of 

physical quantities in terms of which the behaviour of microsystems may be completely described. 

 Note that the corpuscular interpretation of quantum theory is not definitive. We might require, for 

example, that, instead of (82), the condition ( ) ( )Ψ Ψx x= ′0  at t T= 0  be satisfied. Then we should obtain 

another corpuscular interpretation which would lead to other physical predictions with respect to real 

quantum processes. The answer to the question: what interpretation is appropriate to Nature? May be 

found only on the basis of experimental data. Obviously, the choice of interpretation is determined by the 

choice of the vacuum state at the initial moment. In this connection the question arises (Oleinik 1985b): 

what is the structure of the physical vacuum in the real world? 

 The conclusions drawn above are a direct consequence of physical principles underlying the 

quantum theory. The conventional interpretation of quantities like ( )±α im  (91) as the probability amplitudes 

for real quantum processes disagrees with the principles mentioned above because it does not allow for the 

inevitable deformation of vacuum background under the influence of perturbation. 

 The operator ( )′Ψ0 x  may be represented in the form 

( ) ( ) ( ) ( )( )[ ]∑ −++ ϕ′+ϕ′=Ψ′
n

nnnn xbxax0  

where 
 ( ) ( )′ = +a S t a S t

n n
 ( ) ( )′ =+ + +b S t b S t

n n
 at t T≥ 1 . 

As a rule, in case of an arbitrary external field ( )A
ext

x  the conditions 

 ( ) ∞<β∑ +

mn
nm

,

2
 ( ) ∞<α∑ −

mn
nm

,

2
 

are not fulfilled. This means that the operators a b
n n
,  and ′ ′a b

n n
,  give unitary non-equivalent 

representations of the canonical anticommutation relations (Barton 1965, Oleinik 1979, Grib et al 1980). 

Therefore the above may be formulated as follows. During the process of time evolution of the quantum 

system in an external field there occurs the transition of the system to the unitary non-equivalent 

representations of the canonical anticommutation relations. The physical reason for this transition is the 

excitation of the vacuum background under the action of the external field. 

 To conclude this section let us dwell on the conventional interpretation of the problem of electron-

positron pair creation in an external field and discuss the true physical meaning of those guantities which are 

calculated within the theory adopted at present (see Oleinik 1985b). 
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 According to (91) after switching off the external field, that is at 1Tt > , in the expansion of the 

wavefunction ( )( )xn
−ψ  there appear the positive-frequency components. This fact is usually interpreted as 

pair creation. The quantity 

 ( ) ( ) ( )( )
tnmnm

−+− ψϕ=α ,  (95) 

is assumed to be the probability amplitude for creating the pair. Thus, from the point of view of the 

transition amplitude theory the inequality 

 ( ) 0≠α −
nm  (96) 

is the pair creation condition. The quantity 

 ( )∑ −α=
mn

nm
,

2
N  (97) 

is interpreted as the total number of real pairs created in the external field. 

 It is clear that the condition (96) is far from being equivalent to (87). Indeed, in the electric field 

( )tEE =  arbitrary varying in time, ( ) 0≠α −
nm , but ( )div x

v a c
j = 0 . Obviously, the quantity N  represents the 

number of states in a set which is the intersection of subspaces ( ) ( )M − t  and ( )M 0

+ . It may serve as a 

measure of the vacuum background distortions, but bears no relation to real electron-positron pair creation. 

As was explained above, real pairs are formed only if the vacuum current sources appear in the subspace 

( ) ( )M − t , that is if  ( ) ( )div xJ − ≠ 0  If the latter inequality is not fulfilled, the ‘positrons’ whose number is 

given by (97) are ‘frozen’ in the Dirac sea. They remain part of the Dirac sea and cannot be experimentally 

observed. 

 In the lowest order of perturbation theory 

 ( ) ( ) ( ) ( ) ( )( )∫
+∞

∞−

−+− ϕϕ−=α xxexdi nextmnm Ar ˆ  (98) 

at T T0 1→ −∞ → ∞, . If we take as an example the field ( ) txext ωω−= − sin1EA , then for this field 

( )div x
v a c

j = 0 , but ( ) 0≠α −
nm  at m2>ω . Consequently, the vacuum may absorb the energy of the applied 

field with the frequencies m2>ω  without creating real pairs. The applied field energy is expended in 

redistribution of the vacuum charges ( )( )j
v a c

x ≠ 0  and is stored in the form of the vacuum background 

deformations (Oleinik 1983). At 1Tt >  the virtual particles are in non-stationary states containing the 

components with both positive and negative frequencies. This means that at 1Tt >  the vacuum turns out to 

be in the excited state which differs considerably from the ground vacuum state at t T= 0  (see(93)). The 
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specific structure of the excited vacuum is defined by the coefficients in expansion (91) and depends on 

vacuum pumping by an applied field. 

 
6. Conclusion 

It is shown on the simplest models that there are considerable differences between the probability fluxes Π  

and the transition probabilities in unit time W . The essense of these differences is that the probability flux is 

the spacetime characteristic of the quantum process and the transition probability in unit time is the 

momentum-energy characteristic of the same process. The main difference between Π  and W  consists of 

the fact the fluxes allow for the interference between the probability amplitudes relating to transitions to 

various quantum states while in the transition probabilities there are no interference terms. 

It is noted that with decreasing duration of the electric field pulse causing the bound-state decay the 

difference between the quantities Π  and W  increases. However, there are regions of the values of 

parameters characterising quantum processes in which the quantities mentioned above do not practically 

differ from each other. Perhaps this is the reason why up to now, while evaluating the cross sections of 

scattering processes, the difference between Π  and W  has not been taken into account and the transition 

probabilities, instead of the probability fluxes, have been used. 

 It is shown that in the case of a weak electric field the exponential law of bound-state decay is not 

valid. The direct transition of a particle from the quasistationary level in the potential well through the 

potential barrier resulting in the exponential law of decay turns out to be extremely unlikely. The main role in 

the decay is played by the quantum jumps of a particle under the influence of an electric field from the 

quasistationary level to the continuous spectrum states. The quantitative difference between the quantities 

Π  and W  in the problem on bound-state decay in a constant electric field is very great. 

The existence of a vacuum background for real microsystems formed by virtual, non-observable 

particles and its continuous deformation during the time evolution is an inevitable consequence of the 

principles underlying quantum theory. The vacuum background may br treated as a framework in which the 

real quantum events occur. Its deformation leads to the continuous change in the point of view of observer 

on the physical properties of quantum state. Due to this the probability amplitudes lose their physical 

meaning. The quantity W represents the rate of change with time of the total population of the energy levels; 

these levels, however, refer partly to the real states and partly to the virtual ones. For this reason the 

transition probabilities W  cannot describe quantum processes registered in experiment. The use of 



 32

quantities of type W  for describing quantum transitions may lead to incorrect qualitative conclusions and 

serious quantitative errors as is the case in the problem of electron-positron pair creation. 

 The deformation of the vacuum background is responsible for the appearance of an energy band of 

vacuum states. The difference between the excited vacuum and the vacuum in the ground state consists of 

the fact that the virtual particles relating to these vacua are in essentially different quantum states, the energy 

of the former exceeding in magnitude the energy of the latter. The specific corpuscular interpretation of 

quantum theory is determined by the choice of the vacuum background at the initial moment. 

As is seen from the results of the present paper and of Oleinik [ 1985b], the difference between Π  

and W  is of significant character and may be illustrated by the example of any quantum process. These 

quantities may coincide in some ranges of parameters characterising the quantum transitions. However, 

such coincidences appear to be of a purely accidental nature. So far as the transition probabilities in unit 

time are still used instead of the probability fluxes when calculating the cross sections for scattering 

processes, it is necessary to revise the theoretical predictions concerning some quantum transitions. One 

should expect that considerable differences between Π  and W  will be found not only for the tunnel effects 

( the bound-state decay under the action of a perturbation, electron-positron pair creation in external fields 

and so on ), but also for such quantum processes as Compton scattering, Möeller scattering of electrons 

and others occuring in strong electromagnetic fields ( see[ see Oleinik 1967 ] ). Recently, serious 

differences between Π  and W  were found and investigated for the Cherencov effect [ Oleinik 1988 ]. 

Because of the existence of considerable quantitative differences between the quantities Π  and W  

it is possible, in principle, to choose the theory of quantum transitions appropriate to Nature on the basis of 

experimental data. The carrying out of such experiments and the detailed investigation of the differences 

between Π  and W  would make more precise the concept of the physical vacuum and could lead to a 

better insight into many quantum processes. 
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