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Absract. Trandtion probabilities in unit time and probability fluxes are compared in sudying the
elementary quantum processes the decay of a bound - state under the action of time varying and constant
eectric fidds. It is shown that the difference between these quantities may be consderable, and so the use
of trangtion probabilitiesW instead of probabilities fluxes P in calculating the particle fluxes, may lead to
serious errors. The difference between P and W is due to the fact that in the formulae for probability

fluxes the interference is taken into account between the trangition amplitudes wheress in the formulae for
trangition probabilities there are no interference terms. The quantity W represents the rate of change with
time of the population of the energy levelsrelating partly to the real states and partly to the virtua ones. For
this reason it cannot be directly measured in experiment. Attention is drawn to the concept of the vacuum
background thet is treated as a physical medium consisting of virtua particles and as a framework in which
the redl quantum events occur. The vacuum background is shown to be continuoudy distorted when a
perturbation acts on a system. Because of this the viewpoint of an observer on the physical properties of
red particles continuoudy varies with time. This fact is not taken into consderation in the conventiond

theory of quantum trangitions based on using the notion of probability amplitude. As aresult, the probability
amplitudes lose their physica meaning. All the physica information on quantum dynamics of a sysem is of
contained in the mean vaues physcd quantities. The existence of consderable differences between the
quantities W and P permits one in principle to make a choice of the correct theory of quantum trangtions
on the basis of experimenta data.

1. Introduction

The main quantity measured in experiments on particle scattering in the number of particles emerging from
the interaction region and passng in unit time through a certain surface defined by the solid-angle eement
dW, that is the particle flux referred to the solid angle dwW [ Blokhintsev 1961 ]. If aparticleis described
by the wavefunction 'Y (r,t) , then in accordance with the principles of quantum mechanics the probability

flux is determined by the expressons

dP =jds j:z'—mv(r,t)%v*(r,t) (1)



where dS - is the vector of the surface dement corresponding to the solid angle dW ,and j isthe
probability flux dengty of the particles with the mass m. The integration of the quantity dP over the whole
solid angle yidds the tota probability flux

P =¢gjdS )

S
Here S isaclosad surface enveloping the spatia region where the interaction occurs.
Introduce the trangition probability in unit time

dge 2
W= alk( 3)

where a,(t) - are the expansion coefficients of thewavefunction Y (r, t) in the eigenfunctions of a.certan

operator ( of the momentum operator, for example). In conventiona scattering theory the quantities (3) are
used as the probability fluxes. But even a brief ingpection of the formulae (2) and reveds that there is a
ggnificant difference between the quantiies P and W [ see Oleinik 1985b, 1987b ]. Indeed, the
probability flux (2) depends on the position in space of the surface S crossed by the registered particles
wheress the trangition probability in unit time (3), often called the rate of the process, isindependent of the
coordinates.

To darify the main differences between P and W, we dwell upon a specific quantum process.
Condder a particle tunndling out of the potentid wdl by an goplied fidd acting during the time interva
(0,T). Let {j ,(r,t)} be the complete orthonormalised set of eigenfunctions of the energy operator of a

particle in the potential well including both the continuous spectrum states (denoted heresfter by j , (r,t),p
being the momentum) and the discrete spectrum states. Assume that | ,(r,t) is the bound-state
wavefunction of the partidle a the initid moment of time t =0 and Y (r,t) istheresuit of time evolution of
the state j ,(r,t) under the influence of the applied field. Expanding the wavefunction Y (r,t) a t 3 T in

terms of the unperturbed functions j , (r,t).
Y (1) =4 a,(t)i (1) 4

and subdtituting (4) into (1), we arrive at the following relationship for the probability flux
|2

d .
P=- Evgjr|Y(r,t) (5)
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where V is the volume of the region containing the potential well and bounded by the surface S . When
deriving (5) we have made use of the Gauss theorem and the continuity equation.

Within the conventiond theory the tunndling trandtion of a particle out of the potentid well is
described in terms of the probability ionisation in unit time ( the ionisation rate)

2

W= i, (1)

i (6)

where the quantity
a,(t)=gri , (r.t)Y(r.t) (7)

represents the amplitude of the particle trangtion from the bound state j , to the continuous spectrum state
j , withinthetimeinterva (0,t) .

As is seen from the comparison of formulae (5) and (6), the main differences between them are as
falows (i) in (5) the summation is implied over dl the Sates of continuous and discrete spectrawhereasin
(6) only the continuous spectrum dates are taken into congderatrion; (i) equation (5) dlows for the
interference between the trangtion amplitudes, as digtinct from (6) which does not involve any interference
terms. It should aso be noted thet the flux P vanishes a the limit of infinitdy large volume (V ® ¥).
Indeed, when V ® ¥ the interference terms in (5) disgppear due to orthogondity of the wavefunctions

j andj .a nt n¢ By virtueof consarvaion in time of the normalisation integra & an(t)|2 = constant

and soweget P =0 for an arbitrary value of t . Thisequality results directly from the oreading in space
of the wavepacket describing the locdised particle state a the initid moment of time.

As was mentioned above, it is the trangtion probabilities in unit time W that are used in
conventiona scattering theory as the probability fluxes P of scattered particles. In view of the fact that the
quantities P andW differ from each other, the following questions arise. Whet is the physica nature of the
difference between P and W ? Which quantities provide adequate information on quantum trangtions?
What is the influence of the vacuum vibrations on physica processes? It is with the detailed consderation
of these questions that this paper is concerned.

In § 2 an analysis is made of the measurements carried out in experiments on particle scattering.
The arguments presented are in favour of the view that it is the probability fluxes rather than the trandtion
probabilities in unit time that are registered in such experiments.

In 88 3 and 4 the differences between the quantities P and W are sudied in detail in problemson
the bound state decay under the influence of the time-varying and constant electric fields (Oleinik 1987b).



It is shown that the difference between them increases with decreasing duration of the eectric pulse causing
decay. When the congtant eectric fidd is weak enough, the bound-state decay disobeys the exponential
law. The basc decay mechaniam turns out to be not the tunnd trangtions of the particle through the
potentid barrier leading to the exponentid decay law but its quantum jumps to the continuous spectrum
states (Oleinik and Arepjev 1984a,b).

In 8§ 5 the vacuum problems of quantum theory are discussed (Oleinik 1984, 1985ab, 19863,
1987b, Oleinik and Arepjev 1983a,b, 1984b). Here the mode of the vacuum background is proposed as
a medium formed by the virtud particles and as a framework in which the redl quantum processes occur
(Oleinik 19864). A driking feature of the quantum dynamics of red microsystems is the continuous
deformation of vacuum background in the course of time evolution. This deformation inevitably leads to a
continuous change, from the observer's viewpoint, in the physicd properties of a quantum particle.
Conventiond scattering theory is based on the assumption that the vacuum background does not change
with time. This assumption is violated in red physicd systems and, as aresult, the probability amplitudes of
quantum trangtions lose their physicd meaning. All the physicad information on quantum processes is
contained in the average vaues of physicd quantities. These conclusons follow of necessity from the
principles upon which the quantum theory rests.

In § 6 the main content of the paper is summarised.

2. What quantities are measured in experiments on particle scattering?

We ghdl turn now to analysing the measurement process to which the particles are subjected while studying
the quantum trangtions. We do not am to give an exhaudtive explanation of this point and merdy dwell
upon the problems which may shed some light on the relationship between the probability fluxes and the
trandtion probabilitiesin unit time.

Let us recdl the reasoning that led to the expressions of type (3). One of the main parts of the
measuring device being used in experiments on particle scattering is the andyser performing the spectra
resolution of the wavefunction (Blokhintsev 1961,1987). If the diffraction grating is taken as an anayser,
then the wavepacket is separated into the waves with different values of momentum. This corresponds to
the expansion of type (4) where j , =j ,(r,t) arethe eigenfunctions of the momentum operator. Confining

oursalves to the one-dimensiond case, let us divide the region in which the momentum varies into intervas

with thewidth Dp and denote by p;, the momentum pertaining to the middie of the i thintervd. If N is

the total number of measurements then, according to the Satisticd interpretation of quantum mechanics, the



number of measurements resulting in the values of momentum in the interval (pi - (Dp/2), P, +(Dp/2))

will be N, where
N,/N =a, (1) Dp ®)

a N. = N. Summing the expresson (8) over dl the interva we find tha the tota number of the particles
i

observed is proportional to (‘jzlp|ap (t)|2 . From this one can directly obtain the relaion (3) which up to a

congtant factor gives the number of particles with arbitrary values of momentum registered by a detector in

unit time. In other words, as follows from our reasoning, the number of particles with momentum lying in the

intervd (p - (Dp/z), p+ (Dp/z)) regisered in unit time is given by
_Dayf
DW = 5 Dp )

- ‘ap(tl) 2

Thereis an important point which is often missed in consdering the measurement process. Suppose

where D(ap‘2 :‘ap(tz) ,Dt=t,-t,.

thet the operator # related to aphysical quantity L hasthe eigenfunctionsj ,,j ,,... corresponding to the
eigenvalues L, L,,..and prior to the measurement process the system in question was in a pure sate
described by the wavefunction Y . Thismay be represented in the form of a spectrd resolution (4). Asis
clamed in the standard courses on quantum mechanics, if the measurement carried out on the system leads
to the eigenvdue L, of thequantity L, then after the measurement the system will belong to anew pure

ensemble described by the wavefunction | |, thet is, as a result of the measurement, a reduction of the

wavepacket takes place:
aai.®i, (10)

n

The possibility of the reduction (10) does not give rise to doubt if the eigenvaue L, belongsto the discrete
gpectrum. But if L, corresponds to the continuous spectrum (for instance, L, = p, p isthe moment)

such a reduction is not possble; otherwise, after measurement the system would became unobservable
because the state would be in the form of a monochromatic wave, which cannot be experimentaly
registered. The wavefunction may only be reduced to a wavepacket of the type
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y(ct)= el ) Gh
()= (ap) #e
the width Dx of the wavepacket and the magnitude of the momentum disperson Dp being connected by
the uncertainty relation Dp >XDx 3 7/2.
It follows from what has been said above that after measurement the particles whose momenta are
within the interval (p- (Dp/2), p +(Dp/2)) shouid be described by the wavepacket y (x,t) (11) rather
than by the monochromatic wave j (x,t) . The probability flux for the wavepacket (11) is expressed by

the equation

i d .
dP =——y (xt}—y " (xt) (12)

which is different from (9) (in one-dimensond case the probability flux dendty coincides with the
probakility flux).
On the other hand, making use of the expresson (11), we find that the change in unit time of the
probability of the particle having in whole space the momenta within the interval mentioned aboveis
P 2
d* e 2da,lt)
— xt) = ¢ ——d
it 9y( ) O™

ar

This expression coincides, asit should, with (9) a Do ® 0,Dt ® 0. To avoid possible misunderstanding,
+¥

it should be noted that if the initia wavepacket y (x,t) = cpip@,(t)i ,.(xt) obeys the time-dependent
B

Schrodinger equation, the reduced wavepacket (11), generaly speaking, does not.

Thus, the quantities (9) and (12) essentidly differ from one another in their physicd meaning:
quantities of the type dW yidd the changes in unit time of the number of particles in whole space on the
condition thet their momenta lie within the intervd of the width Dp, whereas quantities of the type dP

determine only the number of particles that cross a certain surface with the same limitation on the magnitude
of the momentum. The position in space, the form and dimensions of the surface are determined by the
conditions of experiment (in particular, by the relative arrangement of andyser and detector used when

performing the measurements). The quantities dW do not contain any information on the surface which is



crossed by the registered particles; in other words, these quantities do not adlow for certain things are
essentid in conducting the real measurements and which have an influence on their results.

The difference between the probability fluxes and the trangtion probabilities in unit time can be
illusrated by the following example. Let the registered particle be described by the wavefunction

s i é (p¢- p)°u
(k)= 08,0 ol 3, =copf (26 28
.¥ e u

20"
ePg

is defined in (11). Then the probability flux and the trangtion probability in unit time are expressed by the

where c= is the normalisation constant, b and p are constants and the function j (x.t)

formulae
i d .
P(X’t) © %y p(X’t)&y p(X’t) =
3
2 2 2@ 2202 @€ 2 250 2 10
= (2p) ¥ b gp  Xblb” Gy &b O 4 expé- b—%?( P9 <;1+‘ﬂb_2 U (13)
mgb 22mQ€ ngg g 2é mg§ QZmQEH

d % 2
= a_(}jp ;
Note the equdity P (x,t)=0 a x® +¥ andat arbitrary vaueof t . Asis seen from (13), the difference
between the quanties P and W may be consderable. From this it follows, in particular, that the
subdtitution of the probability fluxes by the trangtion probabilities in unit time in formulae defining the cross
sections of quantum processes may lead to serious errors.

The main difference between the probability flux and the trangtion probability in unit time is that the
former has a ‘regidration’ in a definite region of gpace (in the one-dimensiond case, for ingance, the
magnitude of the flux depends on coordinates, see (13)) and the latter refers to the whole space and does
not depend on coordinates. The quantities P and W are, respectively, the spacetime characteristic of a
process and the momentum-energy one (Bykov and Zadernovsky 1981, Bykov and Shepelev 1986). In
accordance with the Bohr complementarity principle (Bohr 1971) the space-time and momentum-energy
dynamicd variables represent the two complementary and mutudly exclusive groups of variables which
cannot manifest themselves smultaneoudy in one and the same quantum ensemble.

In the next two sections the differences between the quantities P and W are andysed in detall
using the examples of dementary quantum processes.

3. Bound-state decay in atime-varying electric field



Let us consder the decay of the bound state of a particle locdised in the potentid well

Uo(z):-%’ (2, k,>0 (14)

under the influence of the time-varying dectric fidd (‘(t) [ Oleinik 1986a, 1987b ]. The potentia energy of
the particleis given by
U,(zt) = -e#(t)z
2

The only energy levd E, =- l2<—° , corresponding to the bound state in the potential well (14) is described
m

by
i o @)=k (- 2e +q (e ] (15)

Denoteby j (z) (n =s,a) the wavefunctions relating to the continuous energy spectrum;

i e,(2) = ag {kcoskz- k,snkdq(2)- of- 2)]
i (=2, snkz k=(2mE)*; E3 0 (16)

a’ :i><k; a; = m(k2 + kf))'lp'lk'1
The wavefunctions (15) and (16) satisfy the following conditions of completeness and orthonormalisation
8§ () o (2)+] (2 o fe) = da- 2)
94 & (2) g, (z) =d(E- Egd,, (17)
& & (i ¢ (29=0 o . (2] =1
Consder the bound-state decay by making use of the Drukarjev method [Drukarjev 1951].Let us
suppose that prior to the moment of time t <0 the sysem isin the bound state j . , anda t =0 the
dectric fidd (t), causing the decay is switched on. Denote by Y . (zt) the solution of the time-
dependent Schrédinger equation in thefiedd U, (z) +U,(z,t) , obeying theinitia condition
Ve, (20)=j ¢, (@) (18)
By adecay we mean here the time evolution of the system in an externd fidd; thet is, the quantum trangtion
ie(2)® Y (zt).
According to the conventiona theory of quantum transtions, the probability amplitude of the

transition of the system fromthe stete j . tothestate j . by themoment t(t > 0) isgiven by

Meoe, ()= 0,08 & ()Y e, (2:1) e (zt)=] (2)e" (19)



The totd trangtion probability in unit time from the bound date to the continuous spectrum ates (the
ionisation rate of the potential well) is of the form
d o R

2

W) = 5 8 Q e[ M. (8]

(20)

The probability flux density j(z,t) and the totd probability flux P (z,t) from the region (- z,+z) are

determined by the expressions

i(2) = 55, Ve, (20) ;i (20) @)
P(zt)= lzeiivi(z.t) = j(z.1)- i(- 21) (22)
where j = (00, j). Our am isto compare in detail the quantities P (z,t) and W(t) for the lectric field
¢(t) . Assuming thefield (t) to be asmall perturbation, we confine ourselves to the second-order terms.

With the required accuracy the wavefunction Y ¢ (z, t) may be represented as follows:

Ye (zt)=j ¢, (2t)+Y Pz t)+Y?

YO1)=-i8 ] ¢ (2t)Qaty. 4 (1) 23)
En
Yg)(Z,t) =- éj En (Z,t)% édtlédtszmE%( ) ’[E%Eo(t )
En E

Al g Er%() qu ( ) 1(Z1t)j Er%(z’t) (24)

Here the symbol é means the integration over continuous spectrum gtates and the summation over
En

discrete spectrum ones. Substituting the expression (23) into (19) and retaining only terms of first order in

U,, wearivea

Mg (t)=-i édtl./ﬂE (t,)d.. (25)

n:Eo

This dlows for the fact that the interaction Hamiltonian U, (z,t) is an odd function in z and the function
j ¢ (2) isanevenone

Note that the component of the probability flux density (21), equd to

d.,.
L) Sy vee

isan even functionin z, so it makes no contribution to the tota flux (22). For smplicity, we caculate the

flux P(z,t) a largevauesof |z such that
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ko|g>>1 (26)

In this case the component of the probability flux dengity, equa to

i d,.
o] EO(z,t)EYEEf)(z,t)+c.c.

will be exponentidly small; therefore it may be neglected. As a result, we obtain the following formula for
the totd probability flux:

P(20) =Y B2t} Y (z1) @7)

Making use of (15), (16) and (24), we caculate the matrix element:

e (t) = - da. kZKK? +k2) *ee(t) expli(E - E )] 28)

Further, from the relationships (20), (23), (25) and (28) we can infer

K2 g | ék* +k2 u
—yédtle%(tl)COSSTO(t - )G (29)

W(t) = 32p ke (t)¢) ok T
0 u

Y 8(zt) :i4p'1k%5e'iE°tédkﬁédtleﬁ(tl)e(pg- i k22+mk§ (t- tl)§
Asthe dectric field we take
e(t) = cpwxe,, coswx, €, = p‘lGéﬁo[(w- W, )’ +Gz]'1
thet is
¢(t) = €, coswx e @ t3 0 (30)

The quantity G'* may be interpreted as the duration of a pulse of dectric fild.
After performing the integration over t, in (29), we have

W(t) = 16p *k: (e#)* mxcosw,t xe ¢ § {i [J(S (t)e'™ - . (O)e'isw‘*'et]+cc}

s=*1
N

YO(zt)=-20Klet,mQ |7, (t.2)- #,(0,2)e "y @1

s=]]

Above we have used the notation

2

=gl 1) e ) op 1S
2

7,(t.2) :ﬂlflz &, akli® + £, (K + 1, )'1exp§ z- |;—:nt§ (32)

2
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f, =k?; f,. = 2m(E,|- sw,+iG).

[o]

For convenience the functions ¢ _(t) and ¢ _ (t, z) may be expressed in terms of the following integrals

2

Y(f):d¥dk(k2+f)'le<p§iakz-i%tg ad  Y(f)=V,

(33)

z=0

which are connected with the probability function Erfc(z) by

2 lf

g_g e [ e Erfc(- al )) rerlt Erfc(aT(]+))]$ al = $gz; i

..l tf \¥ )
= 22 2mErfc 1/ 4— Erfc( 2) =Qdxe ™ ; (34b)
g o é 2m’ o ?

7 [t

For thefunctions .« _(t) and ¢ _ (t, z) we have the following representations

12 df;
(35
171 1
P \t,z)=—— f ) Y(f,)- Y(f
(02)= g (- 1) () (e )
from which we can infer the equdlities
3
i, 0)=- B (1 + 1)
2 df?
(36)
%
7,07=—"1 2[' e/t el LAt e ln,
(fzs - fl) 2(f25 - fl)
We confine ourselves to considering the region of parameters where
G<<|w, - |E| <<|E] (37)
M>>], z<< L (1, )%, 2 m<<1(n 12s)
2m m 2t
For illugtration the following numericd values of parameters are given: if
|Eo| = 05ev, G=10"[E, |, W, - |E,| =10°°|,, (38)
G 31 k,z=10?
then
t|f
ffal 10, Mg g0 ZMeL 1o Gt o130 s (39)

2m 2m 2t 4’



Casel. w, >|E,|. Intheregion of parameters (37) the following inequalities are stisfied:

Re(i aff)) >0, Rea | Tn ot §> 0 (n=12-1)
Glam’

(40)
Re(+al?)) <0, Reé\/geig g< 0
2
Taking into account the formula
Erfc(- z) = /p - Erfc(2), Rez>0

the asymptotic form of the probability function

Erfc(2) :e‘*%- 4_;+8%§ Rez>0,|4>>1 (41)
and the relations (34) and (35) aswdll, we obtain

H(t)=- o1 E(_fzi):z)“ ei%ds +%Ze2'—tm§ f 4 (42)

It is obvious that |7, (t)] >> | ,(t), the first term on the right-hand side of the equality (42) being much

grester than the second term (at Gt £ 1). Note that in (31) for W(t) there are high-frequency terms of the
type exp(+i2w,t). These terms are omitted and only the highest magnitude values are retained. The final

result is given by

w(t) = 8k (e, ) rdf21|yf eG; ZJ—EeT:;O cong(J

In the same way we calculate the function ¢ (t,z) (35) defining the wavefunction Y ¥ (z,t) .

Dw (43)

Omitting the intermediate ca culations, we write out the find expression:

Y B(z,t) = 2k %eg mf'z}e”*"A2 - L el T et 4y 44
Eo( ) 0 “Co!'ly i 2\/6 zma l}; (44)

Here the following notation is introduced:

tf s
2 df,) =i A

= (Ed|- wok + d2nlw, - | ). A = G-

Thetota probability flux is determined by

1.
78
%)

21
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P(z,t) = 8k3(er, )2 mf,[ £, %e e - (45)
1 o, | po 1 @& mZ pt')l‘J:"J
T 2p&2mg & gAl Zf; Afaf oA a5y

b

As is seen from the comparison of (43) with (45), the marked difference between these formulae

arises at

21 21 (46)

At the values of parametersindicated in (38) and (39) we have

1 1
* =410,

" 10

The formula (45) dso remains approximatdy vaid when, ingead of the last two inequdities (37), the

21 21

fallowing inequdlities are fulfilled:

z< 3|,
m

Then the quantity |A2| may be of theorder of 1 while Gt >>1 (thatise ™ » 1, e® <<1). Inthiscase
the difference between the quantiies W(t) and P(zt) will be particulary substantid. Thus, with
increesng G, that is with decreasing duration of the dectric pulse, the difference between W(t) and
P(zt) becomesgreater.

Case 2. W, <|E,|. Now in the region of parameters (37) the following inequdities are satisfied:

& i2 0
Re(iar(f))>0,Re§ t, "ed2>0 adln
2m
From (34), (35) and (41) we infer
_3
1 yeeit 02, ,,.

H () ==phe—% " f 4} 47
()= 5P e (47)

Retaining in (31) again only the highest magnitude terms, we arrive a the equdity

le

1ﬂ|f |0

I ]
w(t) =- 8k§(eé§0)2mfl'4e'el%_nq fo| 2e® - 1/_| "k % P cong0| W )t+ (48)
: ﬂ !

The andogous expression for the probability flux is of the form
P(2,t) = - 8k3 (et o, ‘e a1, Fe® - (49)
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L f21|0 é

T e SR e Gt

Thefollowing notation is used here:

tf 3
|t2—2n§- z(f21) =iB, - B,
Blz(|E0|-WO)t- znﬁ{fﬂﬁ; B, :Gt+z|f2151

From the formulae given above it follows that the marked difference between W(t) and P (z,t)

arises, asin case 1, when the conditions (46) are fulfilled. The firgt terms on the right-hand sides of (48)

and (49) differ by the factor exp|- 2z| f21|%] , Which can be very small (at the vaues of parameters (38)

and (39) exp|-

21

Thus, in a rather wide region of parameters of the problem the probability fluxes differ gppreciably
from the trangtion probabilities in unit time. However, there are dso regions of parameters where the

quantities under study do not practicdly differ from each other.

4. Bound-state decay in a constant electric field

In this section we consder the particle escaping from the delta function potentia well (14) under the action
of the congtant eectric fidd & (Oleinik 1987a). We follow the same statement of the physica problem as
in the previous section but the dectric fidd is taken into condderation precisdy, without using perturbation
theory (Oleinik and Arepjev 19844).

Denoteby f .(z) theenergy eigenfunctions of the electron in the potentia fidd

U(z)=- kEod(z)- ecz (50)

and by Y (z,t) the solution of the Schrodinger equation in the fidd (50) satifying the initid condition

(18). Thewavefunction Y ¢ (z,t) may be expended in the functions f (z) :
Ye, (21)= ), dEce f ()™ (51)
Here c.. aethe congtant coefficients defined by theinitial condition (18):

= 0,9 (2 &, (2) (52)



15

Making use of the condition of completeness (17), the formula (20) for the ionisation probability may be

tranformed as follows

_.d z
W(t) =- pry 28 (t)
(53)
g (t)= djdzj w(zt)Y e (zt)
Subdtituting the representation (51) into the last equetion, we obtain

+¥
g, (t)= (‘)jE|CEEO ? o i(E-Eok (54)

-¥

The total probability flux can be worked out from (21), (22) and (51). The wavefunction f_(z) is
determined by
fe(2)=a{Ai(- x)(- 2)+[a- Ai(- x) +beBi(- xJa(z)}
a. =1- 2pbAi(- x,)Bi(- x,), be = 2pAi2(- x,),
la.|” =2mbk; (a2 +b2) *; (55)

E
— -1 . —h2 .
X=K,b z+x,; X, =b |Eo|’

Here b is a dimensonless parameter defined by the formula b= k0(2me%f;h)% (in ordinary units);
Ai(- x) and Bi(- x) are Airy functions.

Thefunction .« . (t) (54) can be rewritten in the form

+¥
M (t)= @Ixe“”"|P(x)|2(af +p2)* (56)
-¥
where a :aE|E=X|EO|; b, :bE|E=X|EO|; the function P(x) isdetermined by
1
ik, 02 . _®E 0
Cee =|E[* 2 : 57
EE, |o| g2mb5 ag |EO|B (57)

Here and below the dimensionless time 7 =|E |t/# and coordinate =k ,z/h are introduced. In

terms of these variables the ionisation probability in unit time and the probakility flux dengity are of the form

wp=Ehur), =Bl

~ d
W(T):-E

G T)

e, t) ’ (58)
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T T)=ive (T )divgo(x,T )
Z

Y., (.7 ) =b% gybee ™ P(xa +b)
“{Ai(- x)q(- 2)+[a,Al- x)+b,Bi(- x)}a(z)}, 0 bl + b7y

From (52), (55) and (57) the following representations may be derived:

P(x) =b%|e ™ G(b) + €™ F (b)],

F(b)= Eplxe-bx [a, Ai(- x)+b,Bi(- )] (59)

X0
G(b)= ¢yixe™ Ai- x), X, =b
-¥
The quantities F(b) and G(b) being considered asfunctions of b a fixed valuesof x,,a, and b, obey

the firg-order differentia equations

?j_E' b?F = e [a, Ai¢- x,)+Db,Bi¢- x,)]-

- be bxo[axAi(_ x0)+bXBi(- Xo)]1

3—S+b26 =e” [Ai€- x,)+bAi(- x, )]

from which the following representations can be inferred:
e F(b) =- A x, )Y (x)- Ai(- %, )2bY{" (x)- Y(x)),

e ™G(b) = o 50 ¥d:ixAi(x) + A€ x, YO (x) + Ai(- x, )V, (x),

- Xg

Yn(+)(x) = bn+l ¥djtt”e‘ bsﬂx(t),
1

n

1
Y(')(X) - bn+l @ttneb?’q)((t), qx(t) — %(t3 _ l) + X(t _ 1)
0
We shdl perform the further caculations under the assumption that the inequdity
b>>1 (60)
is satisfied. The exigtence of the large parameter (b) permits us to use effectively the stationary phase
method (Erdelyi 1962) and the method of integration by parts. The corresponding caculations are quite
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dementary though rather bulky. So we omit the intermediate cdculations and write out only the find

formula
=p#f1- (- X)) a x£ - 1- (I/b)
_ 1 i 2- x¢ é s 2h
_4.\/6%2+2+x¢ E% ( sb }’)_
1x®A[L- f(a el 2b°(- x)% +a2) (61)

at x:-1+%¢; IX¢£ 1, a =_D”

=200 (- @) °l (- )l 20%- 1)

a - 1+i£ x£-1
b b

= ab 7(1+ x) °[Ai€- X, ) +bAi(- X, ] at x>-%,x0:b2x

With the aid of (56), (58) and (61) one can readily work out the quantities W(T ) and j(*,T). Note
that the function (a2 +b2)'l has apole at

E=E,(1+5b° +iG) G=exp(- £b?) (62)
The formula (62) gives the energy and the damping of the quasstationary leve arising in the potentia well
(14) under the influence of an dectric fidd. Due to the existence of the pole the function (ai + bf)'1
involved in the integrands of the expressions (56) and (58) has the maximum at x =- 1- I—%b‘G ° X%,. The
width of themaximum D defined by the equaity

(af +bf)'1 :%max(ai +bX2)'l =2G?

X=Xy+D

coincides with the dimengonless damping: D = G.In the region of b (60) the height of the maximum is
rather consderable, but the width is smal. Further, to obtain the numerical estimates we put:
|E,| = 05ev, ¢ = x>6x10°v/cm (63)

Then b= 3,31><x'% and we have the fallowing table.

1 3.31 48.35 102
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2 2.63 24.18 3.2 10"
4 2.08 12.09 5.6 10°
6 1.82 8.06 3.2 10*

While calculating . ¢ (t) (56) let usfirst teke into account the contribution to the integral made by

avicinity of the resonance point x = x, :

Xo+d
O dxe ixXT | (X)|2(af + bf)l —

Xo- d

écosdT

it 1
— A Xl + A-GT _ -1
=e %e 2p GT8

P g
2+S|(dT )% (64)

X\ i t . - .
where Si(x) = oit%. In deriving this formula we have assumed that d » b™* >>G, and have taken

into account the equality

P(x) =%ap(- 2p?)

which is vdid, according to (61), in the close vicinity of the resonance point. If only the contribution of the
resonance point is alowed for, then for ionisation probability we find

W(T ) » 2Gexp(- 2GT ) (65)
By this formula the so-called exponentid decay is described (Baz et al 1971). According to data given in

E, )G'1 »10"° s and thus

the table, at x =1 one act of ionisation occurs within the period of time (
W(T)»10°s?,

With the aid of (61) one can readily ascertain the contribution to the integra (56) made by the
regions x,+dE£xX£-(/b) and Xx£x -d tobe exponentidly small. Thus, there remains only the
contribution made by the vicinity of the resonance point x = x, and by theregion x3 - (I/b). Inview of
(61) we obtain such an expresson (assuming the inequaity d >> G ) to be satisfied, we retain only the first
term on the right-hand side of (64):

A, (t) = exp(- ix,T - GT) g’% (66)

Q-I-I o:

K(a,b) =160 Oixe'XT 1+ %) °[Ai € x,) +bAi(- x, )P (aZ +b2)*
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Estimete the quantity .« (t) at largevaluesof T (T 3 b%).ln this case the integrand in (66) isa
high-frequency function, and so the main contribution to the integrd is made by the integration limits and
dationary points, the contribution of the latter being more consderable. Separate from (66) the integral
K(1/b,¥) and consider the following factor of itsintegrand:

[Ai¢- x,)+bAI(- x, ) _
a:+b?

_bx” 1- (2cos22/x# )+ (1/x)(1+ sin 2z)- sin 2z _

67
2p 1- (ZCOSZZ/X}/Z)+(2/X)(1+S'n 27) (67)
be 2 2 213y %
12SZ . :_b 2.
2 &, ( )e Z=3D"X

Here we have used the asymptotic form of the Airy function and performed the Fourier transformation. The
expanson coefficientsin (67) are of the form

—_
><
—

)
“'H
n
Il
H
N

Substituting (67) into the formulafor K (1/b, ¥ ), we obtain
-6 & ¥\ XZ ii s (x)
K(Y/b,¥)=16p0° § ¢dx——D,(x)e":;
s=- ¥b-% (1+X )
J J(X)=-x°T +4503° (68)
In the region b™”% £ x<¥ thefunction j ,(x) has the stationery points x =T /2sb® © x_, for those
vdues s=12,.., awhich x,=b%, (thatis,a T >2sb’). Consider suchvauesof T for which

the conditions 2b” < T < 4b” ,are fulfilled, provided that 2 >>1. Then there is the

only stetionary point x =x, =T / 2b® on the path of integration. Using the Sationary phase method, we
arive a
€ i _ T (_3'2 pu

K(¥/b,¥)=-8p " °T %1+ x?) “expe T

- (69)
g 3 &g 4H

With the integra K(- 1/b, +]/b) there are no sationary points on the integration path, and so thisintegral
may be neglected. From (58), (66) and (69) we now infer



€ 1eeT 5’0 pil

W(T)=2Ge " +L, +L,cos(T &+ gz U- ~y;
i 8 3&Dgg 4
4 2
L, =192p 'b 2T 'Zﬂm—;ﬁ; (70)
(1+ xf)

2
L, =-16p 0T # 2 _e®
(1+ xf)

The firg term on the right-hand side of (70) dlows for the contribution of the resonance point and gives the
law of exponentid decay. The third term is a result of interference between the resonance term and the
non-exponentia  one in the matrix dement (66). The vadues of dl the three terms in (70) a
T =3”% b =3.31(G <<1) aregiven below:

2G=2"10""; L, =27 107", L, =337 10°° (72)

Asis seen from (71), the contribution of the resonance point to the ionisation probability turns out
to be very samdl. Physicdly, this means that in the region of b under study (b>>1) thedirect tunnd
trangtion of the particle from the quasstationary leve in the potentiad well through the barrier is hardly
probable. The nain role is played by the processes indicated by Olenik and Arepjev (1984a) - the
quantum jumps of partices under the influence of the dectric fiedd from the quesdaionary leve to
continuous spectrum states. These jumps do lead to the non-exponentid law of decay.

Let us turn to caculating the probability flux dengty. We limit oursalves to consderetion of the
region > 0. The main contribution to the wavefunction Y (%’,T ) (58) are made by a vicinity of the

resonance point x = x, and by the region x3 - I/b. Denoting these contributions by Y, (,T ) and
Y, (%,T), respectively, we have

Y, (0. T) =Y, (57 )+ Y, (x,T)
The probability flux dengty is defined asfollows.

1067 )= 0000 T)+ 02, 7)

-

HERABEIE- SACRDLANCAD (72)
n=1,2 dz
TO6T)=iv, (T )divg(z,r )+cc.
V4

The quantity j, will be referred to as the interference flux. The component Y, (*,T) of the

wavefunction is of the form
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Y, (¢, T) = (ob)% expl- 2b® +iT - GT)[B|( )+|A|( )] (73)
X =%b*t- b?

Making use of (73) we derive the law of exponentid decay (see (70)):

9 y:(,7)=2ce (74)

iY,(x, T )OIZ

The lagt quantity turns out to be exponentidly small; it may be neglected. By virtue of (58) and (73) the
flux components j, and j, may be transformed into the form

T ) =2y, (6T )di;vc(m )
7.6, T)=2p%pe ™ i‘jjxs'n[(1+ X)T JP(x)(a2 +b2)* (75)
o
" [a,Ai(- x)+b,Bi(- ]—BI( )
where the following notation is introduced:
{v.(xT)Y. (>1)=b% z‘yix{cosxT ;SN xT }’ (76)
I

P& +b7) "[a, Ai(- ) +b,Bi(- x)]

While cdculaing the probability flux dengty, we shdl condder such digances Z that
Xx=%b*+b*x >>1. In this case we can take advantage of the asymptotic form of the Airy functions.
Then in the integrand (76) there arise the rapidly oscillating factors of the type exp(ij , (x)) where

i .(x)=xT £2(xb* +b?x)*

Thefunction | +(x) has no gationary point, but the function | (x) has one a

- 95 0
b’ é
Assumethat T »b”% % »b?. Then X, £14/b and x » b >>1 and 0 the use of the asymptatic form of
the Airy functionsis vaid. Usng the stationary phase method in cadculating the function (76), we obtain
T,06,T)=2b*(a2 +b2 | 'P2(x;) 7

2

P(x) =4b % (1+x) *[Ai€- x,) +bAi(- x,)] X, =b?x.



The formula for the interference flux ,(%,T ) can be inferred andogoudly. Assuming that x,x>>1, we
arive a the relaion

L(r.T)=-21 b2 eq( 2b°)P(x fa2 +bfg)'l'

1.~ .44 .
: !g‘ig an 7% +2Ga sn(r +i ()b, ooslr +1 (6 )]- (78)
fjexs & 4g”

~ Y4 y
- g% cos?%i% +%3ax5 cos(T +j _(x; )+ b. sn(T +j (XO))]:;)

The numerica estimate for the probability flux density isgiven & T = 30% b = 3.31. According
to (77) the maximum of the probability flux isreached a x; =0, thatisa T ?/b® - ¥ =0® ¥ =9b? (
X,X >>1 ). Sowe have

i, @o*,  j,»10 (79)

From comparing (79) with (70) and (71) it is seen that the probability flux density turns out to be much
gregter in magnitude than the trangtion probability in unit time. It should be pointed out thet in the
calculations above we have used no expansons in perturbation.

Aswas explained in § 2, in the experiments on particle scattering the particle fluxes are registered.
Therefore, it is naturd to describe quantum processes in terms of the probability fluxes. Attention should be
drawn to the following point. The caculaion given aove of the ionisation probability flux confirms the
concluson made earlier by virtue of the ionisation probability in unit time; namely, quantum jumps of a
particle from the quasigtationary states to those of the continuous spectrum are the main mechaniam of

ionisationa b >>1. However, the quantitative characteristics of the ionisation process obtained as a result
of both calculations turn out to be quite different.

5. Quantum processes and vacuum vibrations

According to the conventiond theory of quantum fields one of the main factors influencing physicd
properties and the behaviour of a microsystem is the continuous interaction of red particles with the
vacuum ‘as with such a type of physcad media in which these particles move (Bogoliubov and Shirkov
1976). Any real experimentally observed processes are considered to be accompanied by non-observable
virtua processes due to the interaction of the microsystem with vacuum vibrations.

Let us trace the way of introducing the main concepts of quantum fied theory by usng as an
example the Smplest mode - the e ectron-positron fidd interacting with the externd fidld A, (x) that acts



only during the time intervl (T, T, ). Denote by {j ¢)(x)} the complete orthonormalised set of functions
obeying the Dirac equation for a free eectron (n is the quantum number; the Sgns + and - refer to the
positive-frequency and negative -frequency States, respectively; x = (t, r) . By the superposition principle
an arbitrary solution of Dirac’s equation may be represented as follows:

& [ai £700+i D(x)|° Yo (x)

a, and b, being the congtant coefficients. The trandtion to the second quantisation theory consists of

n

replacing the coefficients a, and b, by the operators of the second quantisation &, and Bn to satisfy the

ordinary anticommuitation relations and to act in some space of ate vectors. The quantity

A

Volx)=& 8 $(x)+bj () (80)
obtained in this way is cdled the free dectron-postron field operator in the Heisenberg picture. The space
of dtate vectors may be generated by operating the creation operators a” and b on the vacuum ket

vector |0) defined by the equdities a_|0) =b_ |0) =0 a any n.Here and below, the sign ~ above the

operators is omitted. These relationships together with the conjugate ones (0fa” =(0b” =0 and the
normalisation condition {0]0) =1 define the vacuum of the free dectron-positron

To daify the concept of a virtud particle, let us tumn to the fidld operator Y, (x). The second
quantisation operators a, andb,” involved in (80) may correspond both to the real observable particles

and to the virtual non-observable ones depending on the State of the eectron-positron field. For example, if
the state is described by the ket vector

f,)=a"|0) (81)

then the wavefunction j *(x) a n =iin (80) describes the red partice state and al the rest of
wavefunctions should be attributed to the virtua states. Thus, we arrive & the notion of the virtua state as
vacancy (an empty gate) in the space of one-particle states which may be occupied by a red physica
particle (Oleinik 1986a). As is seen from (80), the virtual states (or particles) as well as the red particles
are described by the same quantum numbers, the wavefunctions of real and virtud particlesareincluded in
(80) on equd grounds. The physcd medium congsting of virtuad particles will be cdled the vacuum
background. An empty lecture hal with a great number of desks may serve as an image of the vacuum
background. The empty seats at the desks correspond to the vacancies in the eectron-podtron field (the
virtud particles0 and the student at the desk is like ared particle that occupies the corresponding vacancy.
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Thus, the vacuum background is a set of vacancies which are described by certain wavefunctions and can
be occupied by red particles.

Consider now the time evolution of the eectronpositron fidd under the influence of externd field.
The field operator Y (x) corresponding to paticles in the externd fidd A_ (x) is to satisfy the Dirac

ext

eguetion in thisfield and the initial condlition

Y(x) =Y, (x) at=T, (82)
From this we can infer the representation

Y(x)=8 [ay ) +bry () (83)
where y (#)(x) are the solutions of Dirac’sequantion inthefidld A (x) obeying theinitia condiition

yPW=iPx)  at=r, (84)

From (80) and (83) it is seen that the time evolution Y (x) ® Y (x) may betreated asa‘dressing’ of the
‘bare’ states | “)(x), both real and virtual, in the external field. The states of both real and virtual dressed
particles in the externdl field a a moment of time t(t > T,) are described by the wavefunctions y ((x)
distinct from the free wavefunctions j &)(x). This means that the time evolution of the system in external

field leads to the deformation of the vacuum background. The virtud particles existing in vacuum before
and after the switching on a perturbation differ from each other by their properties. If we recdl our visud
comparison of the vacuum background with the empty lecture hdl, we may say that under the influence of
an goplied fidd the empty seats at desks are deformed. The point is that the processes of ‘dressing’ of
virtua dates take place irrespective of whether red particles are present in the system under study or not.
The processes responsible for the vacuum background distortions which inevitably occur in any
microsystem subjected to a perturbation may be accompanied by the creation and annihilation of red

€electron-positron pairs. In these processes the virtua states are converted into the real ones and vice versa

Let us consider them in more detail following the paper by Oleinik (1985h). Introduce the subspace M ¢
and M 0(‘) which are orthogond to each other and are formed by linear combinations of the functions | fj)
and j ©), respectively. These subspaces describe the upper and lower continua. The lower continuum is
often called the Dirac sea of ‘bare’ particles. The time evolution of one-particle states | &) ® y #)(x)
caused by an externdl field leads to the evolution of subspaces M &

M& ® MO(t).
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Here M“(t) and M“)(t) are the subspaces whose basis vectors are the functions y )(x) and
y (n‘)(x), respectively. The subspace M (')(t) describes a the moment t of an ectron-pogtron pair in

the externd field should be connected with the formation of aholein Dirac’s of ‘dressed’ rather than ‘bare
particles. To obtain the criterion for red pair cregtion, let us introduce the current density operator

=¥ (x)g,Y (x)- Y (x)g" ¥ (x)]

The mean vaue of this operator in the vacuum State is given by

(Olim]0) =& 75 <)oy (<) & T8 K)awd §)6¢)° (e (). huec ()-89

n n
The cregtion of a hole in the subspace M ()(t), that isin Dirac's sea of ‘dressed’ particles, resultsin the
change of the particle dengity r Vac(x) therein. Consequently, the condition for the rea pair cregtion at a

point x should be expressed by

ﬂr vac (X) 10 (86)
1t
which is equivaent, by the continuity equation, to
divij, (x)to (87)

The vacuum current ... .(x) (85) may be represented in the form
(%) = 357(x)+ 35(x)
I =728 7 (g (9 )

It is natural to treat the quantities J®)(x) asthe current induced by applied figld in the subspace M ®)(t) .
One can show that if the initial condition (84) is imposed on the functions y ) & a finite moment of time
T, , thefollowing equdity isfulfilled:

370=35(x) (89)
It follows from (89) that the appearance of the vacuum current source in- M C)(t) inevitably entails the
formation of the current sourcein M ) (t) . Therefore the crestion of red pairs may be associated with the

appearance of sources of the vectors 3 (x) and 3 (x) . One can readily obtain the following formulae
for the changes in the eectric charge dQ and in the number of red particles dN involume dr in unit times

= (ddiva®(x)- [ddiva®(x))dr = 0

dN = (divd©(x)+ diva®(x))dr = divd,. (x)ar
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asis seen from these expression, the interpretation proposed above does not lead to inconsstencies.

The vadidity of the criterion (87) for the creation and annihilation of a red eectron-podtron pairsis
aso confirmed by smple quditative considerations (Oleinik 1984, 1985h). Pair cregtion is tunnelling of the
second type by which the particle with negative energy is knocked out of the potentid well. The role of the
latter is played by the Dirac sea. The condition for tunnelling of the second type is given by

divij(r,t)t o (90)
where j(r,t) is the probaility flux densty. If the field isin vacuum state, the only physical quantities we
have for describing such a State are the quantities of the type (0|A|0) where A isthe operator of physical
quantity. Therefore the condition for the creation or annihilation of the pair should be expressed by the
inequality (90) inwhich j(r,t) isreplaced by j,. (x).

It is obvious tht if the transition M ) ® M ©)(t) condsts only in distorting the lower continuum
as awhole and is not accompanied by the appearance of sources or sinks of the vector J ) (x) init, then
the creation or annihilation of ared pair does not occur. In this case during time evolution of amicrosystem

the free virtual states | ®)(x) are transformed into the ‘dressed’ virtual states y ()(x). If, for example, the
initial state is described by the ket vector (81), the wavefunction y (*)(x) describes the state of the real
‘dressed’ particlesand dl therest of the y (ni)(x) functionsinvolved in (83) refer to ‘dressed’ virtua dates.

Consider in greater detail the process of vacuum deformation. At t 3 T, the functions y (*(x) may
be expanded in free wavefunctions:

y =& labi )+l D)0 i §(x) (91)
where a®) and b{*) are constant coeffiur'nents By Y &x) we denote the operator Y(x) at t3 T,.In
virtue of (91) the operator Y &x) obeys the Dirac equation for free particles. Thus, the operators Y, (x)
and Y €x) describe the fidds of free particles, but these fidlds essentially differ from each other. In fact,
from the equdities

(OYo(aslo)=j '(x)  (olYsxaslo)=j §”(x)
it is seen that the particles described by the field operator Y (x) are in stationary states and the particle
states described by Y &x) are essentially non-stationary. Denote by .¢(x) = ., (x) + ., (x) the one-
particle Hamiltonian of the partide in the fidd A, (x) consisting of the free Hamiltonian ., (x) and

interaction Hamiltonian ., (x) . The Hamiltonian operators of free particdles and of partidlesin the external

int

field are given by the formulae
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H0 = (‘fjr :YJ(X)JKO(X)YO(X) = é e, (a:an + b:bn)
(92)

H(t)=s" (t)c‘;ir Y5 (X (x)Y,(x): S(t)
where : : is the operator of norma ordering, S(t) is the operator of time evolution of dectrons and
positrons under the action of the fidld A (x) and e, isthe free particle energy. At t 3 T, the operator

H (t) may be represented in the form
H(t) = S*(tH,S(t) = & e, (al (t)a, (t) + by (U)o, (t))° HE
{a,(t)b: (1) = & (B fal)ibS)}+brfat)ibl))
k
The latter equalities are easily obtained with the aid of the rdation Y (x) =S *(t)Y, (x)s(t) and equalities

(80), (83) and (91). The operators H, andH ¢ are the operators of the total energy of the free electron-

positron fidd prior to its interaction with the externd fidd and after this interaction, respectively. We
caculate the mean vaue of the energy in the vacuum state (0|H(t)[o)° E (t) a moments t =T, and

0

t=T:
o o } 2 . 2
EO(TO) =0 EO(Tl):aena gafm) + b(kn) g>o (93)
n k
If thereisno red pair creation, that is the condition
divj,. (x)=0 (94)

is fulfilled, the quantities E, (T0 ) and E, (T1 ) represent the energy of the vacuum background in the ground

date and the energy of the deformed vacuum background. Thus, the quantity E (Tl) is the energy

extracted by virtua particles from the externa field and stored in the vacuum background. With the change
in intensity of the fidd A, (x), we obtain the energy band formed by levels rdlating to the vacuum
background.

From the above it follows that the vacuum background inevitably appears in any quantum system
investigated within the theory of second quantisation. The actud use of this theory means that the virtud
particles and the vacuum background as a medium which the red particles ‘inhabit’ are taken into
condderation. The Hamiltonian operator H(t) (see(92)) expressed through the field operators
automaticdly alows for the influence of the vacuum background on red particles.
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Note that if there is no Dirac sea in the system under study, the vacuum background date is
degenerate. Indeed, if in (80),(83) and (91) the wavefunctions j ¢)(x) and y \)(x) are neglected, one will

obtain €, (T,) = ,(T,), dthough Y €x)* Y, (%), Hg! H,.

Within conventiona scattering theory the quantity |ai(r;) ? (see (92)) isinterpreted as the trangtion

probability of a redl particle from the state j )(x) at the moment t =T, to the state j “)(x) by the
moment t =T, under the action of a perturbation. Because of the vacuum background deformation this

interpretation turns out to be wrong. Indeed, let the initid state be described by the ket vector (81) and,
additiondly, let the condition (94) be vadid. Then, in accordance with what has been said above, the time

evolution of the field occurs in such away that at the moment t = T, thewavefunctions j 6*)(x) describes
the state of the real ‘dressed’ dlectron and al the rest of the j ¢*)(x) functions involved in (83) refer to
‘dressed’ virtual states. But the wavefunction j ()(x) taken at t = T, may be represented, asis seen from
(91), in the form of superposition of both real (j 6*)(x)) and virtua (j $7(x) for n i and j $)(x) for

ay n) ‘dressed states. From this it follows that the quantity |ai(;1) * is the population of the gtate m

relating to the superposition of both real and virtual ‘dressed’ states. Therefore, the quantity a ) cannot be
interpreted as the probability amplitude of the red physical process. This concluson may be dso drawn
from comparing the Klein mechanism of vacuum polarisation with the non-gtationary mechanism of pair
creation predicted by Oleinik and Arepjev (1984b).

It should be stressed that when determining by virtue of (80) the field operator expanson at the
iniid moment t =T,, we thereby fix the corpuscular interpretation of quantum theory. Because of the
vacuum background deformation the ‘dressed’” states which may correspond to observable states of
particles are described after switching off the interaction not by the wavefunctions j &)(x) but by the
wavepackets | ff) (x) (92). It is evident that the use of an anayser resolving the find sate of a particle into
initid states j )(x) makes no physical sense. The vacuum background may be trested as a scene on
which the red quantum events take place and which is continuously deformed by perturbation. The basis of
one-particle states ] ¢)(x) at the moment t =T, does not coincide with the basis j §)(x) referred to the
moment t =T, ; asaresult Y &x) ! Y, (x) . Thismeanstha the standpoint of an ohserver on the physical

properties of quantum date continuoudy varies with time.



Due to the vacuum background deformetion the trangtion probabilities in unit time lose ther
physcad meaning. The physicd information on quantum dynamics is contained in the mean vaues of
physica quantities in terms of which the behaviour of microsystems may be completely described.

Note that the corpuscular interpretation of quantum theory is not definitive. We might require, for
example, that, ingtead of (82), the condition Y (x) =Y &x) a t =T, be satisfied. Then we should obtain
another corpuscular interpretation which would lead to other physicd predictions with respect to red
quantum processes. The answer to the question: what interpretation is appropriate to Nature? May be
found only on the basis of experimental data. Obvioudy, the choice of interpretation is determined by the
choice of the vacuum date at the initid moment. In this connection the question arises (Oleinik 1985h):
what isthe structure of the physicd vacuum in the red world?

The conclusions drawn above are a direct consequence of physica principles underlying the
quantum theory. The conventiond interpretation of quantities like ai(;) (92) as the probability amplitudes

for real quantum processes disagrees with the principles mentioned above because it does not dlow for the
inevitable deformation of vacuum background under the influence of perturbation.

The operator Y §x) may be represented in the form
Y §{x) =& [ag {'(x)+be ()

where
a¢=5"(t)a s(t) b¢ =5*(t)b"s(t) atsT,.

Asarule, in case of an arbitrary externdl field A, (x) the conditions

’ a(‘)2<¥

nm

by}

a | <¥ a

ae not fulfilled. This means that the operators a _,b, and a@¢ b¢ give unitay non-equivaent

representations of the canonica anticommutation relations (Barton 1965, Oleinik 1979, Grib et a 1980).
Therefore the above may be formulated as follows. During the process of time evolution of the quantum
gysem in an externd fidd there occurs the trangtion of the sysem to the unitary nonequivaent
representations of the canonical anticommutation relations. The physical reason for this trangtion is the
excitation of the vacuum background under the action of the externd field.

To conclude this section let us dwell on the conventiond interpretation of the problem of ectron-
positron pair cregtion in an externa field and discuss the true physica meaning of those guantities which are

calculated within the theory adopted at present (see Oleinik 1985h).



According to (91) after switching off the externa field, that isa t >T,, in the expanson of the
wavefunction y (n‘)(x) there appear the positive-frequency components. This fact is usudly interpreted as
pair cregtion. The quantity

ald=( Dy ) (%)
is assumed to be the probability amplitude for creating the pair. Thus, from the point of view of the
trangtion amplitude theory the inequdity
af) 1o (96)
isthe pair cregtion condition. The quantity

a(') 2

nm

=8 (97)

n,m

isinterpreted as the total number of red pairs created in the externd field.

It is clear that the condition (96) is far from being equivaent to (87). Indeed, in the eectric field
¢ =«(t) arbitrary varyingintime, at) 1 0, but div j . (x) = 0. Obvioudly, the quantity .+ representsthe
number of dates in a set which is the intersection of subspaces M (')(t) and M f,”. It may serve as a

messure of the vacuum background distortions, but bears no relation to red eectron-positron pair creation.
As was explained above, red pairs are formed only if the vacuum current sources appear in the subspace

M (b)), thatisif diva©(x) 1 o If the latter inequality is not fulfilled, the ‘ positrons whose number is

given by (97) are ‘frozen’ in the Dirac sea. They remain part of the Dirac sea and cannot be experimentally
observed.

In the lowest order of perturbation theory
+¥
ai)=-i T (xleA o (X (x) (%)
-¥

a T, ®-¥ T ® ¥.If wetake as an example the fidd A_,(x)=-&w'snwt, then for this fidd

divj,. (x)=0,but at) 1 0 a w> 2m. Consequently, the vacuum may absorb the energy of the applied
field with the frequencies w > 2m without cregting red pairs. The applied field energy is expended in
redistribution of the vacuum charges (j L (x)e 0) and is gored in the form of the vacuum background
deformations (Oleinik 1983). At t>T, the virtud particles are in non-dationary states containing the
components with both positive and negative frequencies. This meansthat a t > T, the vacuum turns out to

be in the excited state which differs consderably from the ground vacuum state at t = T, (see(93)). The
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specific gructure of the excited vacuum is defined by the coefficients in expanson (91) and depends on
vacuum pumping by an gpplied fidd.

6. Conclusion

It is shown on the smplest models that there are considerable differences between the probability fluxes P
and the trangtion probabilities in unit time W . The essense of these differences is that the probability flux is
the spacetime characteridic of the quantum process and the trangtion probability in unit time is the
momentum-energy characteristic of the same process. The main difference between P and W conssts of
the fact the fluxes dlow for the interference between the probability amplitudes relating to trangtions to
various quantum states while in the trangtion probabilities there are no interference terms.

It is noted that with decreasing duration of the dectric field pulse causng the bound- state decay the
difference between the quantities P and W increases. However, there are regions of the vaues of
parameters characterisng quantum processes in which the quantities mentioned above do not practicaly
differ from each other. Perhaps this is the reason why up to now, while evaluating the cross sections of
scattering processes, the difference between P and W has not been taken into account and the trangtion
probabilities, instead of the probability fluxes, have been used.

It is shown that in the case of aweek dectric fied the exponentid law of bound-state decay is not
vdid. The direct trangtion of a particle from the quasdaionary levd in the potentid well through the
potentia barrier resulting in the exponentid law of decay turns out to be extremely unlikdy. Themanrolein
the decay is played by the quantum jumps of a particle under the influence of an dectric fidd from the
quasgtationary leve to the continuous spectrum states. The quantitetive difference between the quantities
P and W inthe problem on bound- state decay in a constant electric field is very gredt.

The existence of a vacuum background for red microsystems formed by virtua, non-observable
paticles and its continuous deformation during the time evolution is an inevitable consequence of the
principles underlying quantum theory. The vacuum background may br treated as a framework in which the
real quantum events occur. Its deformation leads to the continuous change in the point of view of observer
on the physicd properties of quantum sate. Due to this the probability amplitudes lose their physica
meaning. The quantity W represents the rate of change with time of the total population of the energy leves,
these levels, however, refer partly to the red states and partly to the virtua ones. For this reason the

trangtion probabilities W cannot describe quantum processes registered in experiment. The use of



quantities of type W for describing quantum trangitions may lead to incorrect quditative conclusons and
serious quantitative errors as is the case in the problem of eectronpositron pair creation.

The deformation of the vacuum background is responsible for the appearance of an energy band of
vacuum dates. The difference between the excited vacuum and the vacuum in the ground state consgts of
the fact that the virtud particles relaing to these vacua are in essentidly different quantum sates, the energy
of the former exceeding in magnitude the energy of the latter. The specific corpuscular interpretation of
quantum theory is determined by the choice of the vacuum background at the initia moment.

Asis seen from the results of the present paper and of Oleinik [ 1985b], the difference between P
and W isof dgnificant character and may be illustrated by the example of any quantum process. These
quantities may coincide in some ranges of parameters characterisng the quantum trangtions. However,
such coincidences gppear to be of a purely accidenta nature. So far as the trangtion probabilities in unit
time are ill used ingtead of the probability fluxes when cdculating the cross sections for scattering
processes, it is necessary to revise the theoreticd predictions concerning some quantum trangtions. One
should expect that considerable differences between P and W will be found not only for the tunnel effects
( the bound- state decay under the action of a perturbation, electron-positron pair cregtion in externd fields
and so on ), but dso for such quantum processes as Compton scattering, Modler scattering of eectrons
and others occuring in srong dectromagnetic fidds ( seg see Oleinik 1967 ] ). Recently, serious
differencesbetween P and W were found and investigated for the Cherencov effect [ Oleinik 1988 ].

Because of the existence of congderable quantitative differences between the quantities P and W
itispossble, in principle, to choose the theory of quantum trangitions appropriate to Nature on the basis of
experimental data. The carrying out of such experiments and the detailed investigation of the differences
between P and W would make more precise the concept of the physica vacuum and could lead to a
better insight into many quantum processes.
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