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Abstract The exact solution of the non-gtationary problem of the tunndling of eectrons out of the one-
dimensond potentid well by the steady eectric field when it is suddenly switched on is obtained. The
formula for the tunnel current dendity is found. The results obtained are compared with those of sationary
tunneling theory that corresponds to the adiabatic switching on of the dectric fidd. It is noted that the
epecidly strong dependence of the tunnel current on the way the eectric fidd is switched on arisesin the
case of the wdl a few bound states. This dependence should be taken into account while andysng
experimenta data on tunndling ( aom ionisation, for example) in an dectric fidd.

1. Introduction

In this paper the exact solution of the non-gtationary problem of the dectron tunneling out of the one-
dimensond wedl in a deady dectric fidd is given. The main result is that the dectron tunneling out of the
well is a quantum trangtion of the eectron from the bound state in the wel to the state which represents a
super podtion of both quas-dationary states and continuous spectra dtates and the subsequent
smultaneous penetration of the eectron wave ‘through’ the barrier via the channds corresponding to the
bound eectron statesin the well.

We consder the eectron tunneling out of the well under the influence of an eectric fidd as anon
dationary quantum mechanica problem. The dectric fiddd causng the tunnd trangtion is assumed to be
switched on a some moment of time. The initid condition imposed on the solution of the Schrédinger time
equation corresponds to the localised eectron state in the well. Such an approach was used by Drukarjev
(1951) while invedtigeting the particle transfer through the potential barrier in the case of the long-range
potential. The present paper generdlises Drukarjev’'s results to the case of the long-range potentia
describing the eectric fidd. This case turns out to be technically more complicated than that of the short-
range potentia as the energy distribution function for the initid state is not a meromorphic function which is
in agreement with the results of Krylov and Fock (1947)



To formulae for the wavefunction of the bound state disintegrating under the influence of the dectric
field and for the dectron tunne current dengity out of the well are derived in the following sections. The
case of the well with the single bound state is consdered. The results obtained are compared with those of
the gtationary theory of tunndling. The difference between them is consderable especidly in the case of the
well with a few bound states and dso remains in the case of the well with the sngle bound sae. Thisis
accounted for by the fact that in the non-gtationary theory under the influence of the field impact due to the
switching on of the dectric fidd, the eectron is largely knocked out of the initid level and goes over to the
wavepacket state that does not make any agppreciable contribution to the tunnd current. In the appendix
we present formulae for the wavefunctions of stationary states and derive some relations required for the

tunnd current cadculation

2. Thewavefunction

Let us congder the problem of eectron tunneling out of the onedimensond potentid well
V,(z)=V,[a(- z- L)+0(z)] under the influence of the dectric field ¢, which is switched on a the

moment of time t =0 in the haf-plane z > 0. The Hamiltonian of the modd is written as follows

H(2,t) = Ho(2) +a(tH 1w (2)
o)

H,(2) = - —=+V, (2); H, . (2)=-etzq(2)

The potentia energy of an dectron V,(z) at t >0 is represented in figure 1. We shall search for the
solution y . (zt) of the Schrodinger time equation with the Hamiltonian H(z,t) , satisfying the initial
condition

y (20)=] .(2) 2

where j () isthe eigenfunction of the Hamiltonian H, (z) with the eigenvalue E(E <V,).
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Figurel. Potentid energy of the ectron in an dectric fidd




(V, and L - arethe depth and width of potentia well )

We expand thewavefunction y  (z,t) in terms of the digenfunction f _(z)(E <V, ) and
f.. (zZE>V,) of theHamiltonian H,(z) + H,, (2):

yc(zt)= odE@'E“F(EG)miE@'E‘F(@ (3)

Vo

Fl(E® = aE¢(E)f E¢(Z); FZ (E© = é. aE‘B (E)f EG (Z) (4)

s=%1

Heretheindex s takes into account the double degeneration of energy levels e E >V,, the congtant
coefficient a.(E) and a, (E) are determined by theinitid condition (2):
ac(E) = ¢flzf {2)i < (2)
(5)
Qe (E) = (?ylZf E¢ (Z)J E (Z); s =1
Using the formulae given in the appendix functions F,(E9 and F,(E¢ may be transformed into

theform

. &.L.(EQP (E9- ik, (ﬁ_ E(gg(yq)}éH(l)

F.(E9= +cC. (6)

ok, gﬁoy 0 zki%lz?%y HO %p(a)

where the prime ( ¢) means that in the corresponding quantity one ought to put E = E ¢,

cosk, ¢L +—-L 1 sn K, (ﬁ_
R(E9=i k2 U
ank, ¢L cosk (ﬁ_

the function P,(E ¢ is determined by the right-hand side of formula (7) if kl¢ isreplaced by - ikl¢. The
rest of the notation is given in gppendix 1. It should be noted that formula (3) and (6) are precise. The

erors aisng in the subsequent relations are connected only with the gpproximate caculations of the

integrasinvolved in (3) and (A2.6).



First of all, we fix the argument phase of Hanke’s functions H {)(z)(n=1,2), namely, we assume

that y=|yle™ a y<0. Besides for smplicity we shdl later caculate the wavefunction y . (zt) a

z>b (seefigurel).

To cdculae the integrds involved in (3), let us condgder the contour integrds

| = (pE® ®F(EQ, (n=12), I, = (JE e ™F,(EQ, where the contours C, (n=12,3) in the

Cn Cs

plane of complex variable E ¢ are shown in figure 2. Note that for the functions F,(E¢ and F,(E¢ the
point E¢=V, = E, isthe branch point and the points E¢=0=E, and E¢=VO(1- z/b)° E, are not
sngular. Nevertheless, for convenience the contours C, pass around dl these points dong the infinitely

gmdl cirde arcs shown in figure 2.

Firstly, we consider theintegra |, . It can be shown that the function F,(E ¢ behaveslike
ep|- 2(2m (DN, IV, - EF(costy +isnsy)|
a - (B¢ V,)=|EC Vv, |e”, ReE(® - ¥

ImEC
h
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Figure 2. The integration contours in the plane of acomplex variable E ¢



Therefore, theangley  (see contour C,) must be in the interval (O%p- O); in this case the integrd adong
the contour C, are of theradius R® ¥ vanishes. The integras dong the arcs of the radius r® 0 vanish

aswell. Applying Cauchy’s theorem on resduesto theintegra 1, , we obtain the formula

Ede “‘F(EJ=

Q-

¥

=¢” (‘)ixexp(ixteiy )Fl(x 'p“y) 2pi & €™ F,(E9

0 ResC;

where @  isthe sum of resdues in the poles located insde the contour C, .
ResC

Theintegrals 1, and |, are investigated anadogoudy. By means of the formulae obtained in this

way we arrive a the following expression for the wavefunction

Y& (z,t)= x{exp[ly +ixte” ]F (xe "”'y) e “F (xe 'p/z)}

0

+ig™ i‘)jxe' Xt[Fl(V0 +Xe'ip/2)- F, (Vo +Xe'ip/2)]' (®)
0

- 2D'e a e ™F(Eg+ q e™F (E‘Du

e?e sCy,C» ResCs

Formula (8) is correct if the condition
t- XA (z/b- )% >0,  x© (2mV0b2)}é 9)
is stidfied. It can be shown that with increesng z the wavefunction sharply decreases if the opposte
inequdity is fulfilled.
We invedigate the asymptotic behaviour of integrals involved in the right-hand sde of the
expresson (8) a t ® ¥ .
We shdl now proceed with the evauation of the firgt of the integras. As the integrand rapidly

decreases with increasing x, the main contribution is made by a smdl vicinity of the point x =0. Taking

into consderation that the point x =0 isnot Sngular and that



(o]

de" de"

E=xe P E=xe PP
a x® +0;n=0,1,..., and integrating by parts, we arive a the concluson that thisintegrd vanishes at
t® ¥ .

In the second integra the point x =0 is the branch point of the integra. Owing to this fact, the
integral does not vanish. The following representation takes place:

F (v, +xe™2)- R, (v, + xe ) = Vx7(x,2) (10)

wherethefunction ¥ (x, z) has no angularity & x = 0. In view of the rapid decrease of the integrand with
increesing X , we may replace the function ](x z) by its expangon in a power seriesin X, retaining only
the first two expanson terms
F(x,z) = 7,(2) + x7,(2) (11)
The formula for Jo(z) which can be easily deduced with the aid of the equdlities (6), (10) and
(112) isgiven by
7 o(2) = (dm/p)2ibv2me™* y~H )(z)[bok, L, (v, ) + L , (v, )B]

[AbWsin(L 2mV, ) + Boos(L 2mv0)]'2 (12)
Here the following notation is used ( G(x) is Euler’s gammafunction )
y =(z/b)x, A=-2i3%4G*(2)
B =p ' xe"°q2), X = (2mV0b2)%‘

Making use of the above formulag, we obtain

ie'iv‘f(‘jixe'x‘[Fl 6/0 + xe'"’/z)- F, (V0 +xe P2 )] =
0

AP il ()2, U
=ioze t%.%0(2)+§./1(2)+...% (13)



Now we turn to computing the last term in (8). One can easlly show that in the regions ReE¢<0
and ReE¢>V, the poles of the functions F,(E¢ and F,(E¢ are such (denotethemby E, - iG ) that
G0 a #®O0.Intheregion 0<ReEt<V, the picture is quite different: here G;® 0 a &® 0.
Denote the maximum vaue of theimeginary part of polesin theregion 0 < ReE¢<V, by G, ,,. Consder
suchtimest , awhich Gt £1, but Gt >>1, where G, istheimaginary part of poles lying outsde the
region 0 < ReEC¢<V, . It is obvious that a such times in the formula for the wavefunction one can retain
only the resduesin polesfor which 0 < ReE¢<V, . Therefore, we shdl further take into account only the

resduesin these poles. It will henceforth be supposed that the inequality
Vo- E
V0

y° X

>1 (14)

is fulfilled. The above mentioned poles of the function F,(E), making the greatest contribution to the

wavefunction are determined by the dispersion equation:
(k2 - k2)sink,L - 2Kk, cosk,L +
~\1 .
+(722) (52 +7k2)sin k, L + 2k k, cosk, L] + (15)

+ (i/2)(k22 + kf)s‘n k,Le'® =0, %

N !
1
wln

y
To derive the latter equation we used the asymptotic formulae for Hankd’s functions a large argument
vaue.

In the absence of an eectric field, equation (15) reduces to equation (A1.4) defining the energy
levds E(? of bound dectron states in the potential well. Theroots E, of equation (15) are of the form:

E, =E® +DE, - iG,
G, =V, EOW, - EOY1+1 1k, (EO) * expl- 22, ) (16)

DE, =- $EOX AV, - EO)[ 2Ll (EO) z,=2

g=c{%

The following remark is appropriate here. The generd decay theory of the ungtable system
prepared at some moment of time is formulated in the book (Goldberger and Watson 1964) This theory
can be applied only to those cases when the poles E, - iG, of the functions of type F,(E¢ and F,(E ¢

have alimited imaginary part. In the dectron tunnelling problem in an eedtric fidd the functions F,(E ¢, as



one may show, have poles with |Gb|® 0, which makes Goldberger and Watson's theory ingpplicable to
the tunndling invedtigation.

Neglecting, in accordance with what has been said above, the exponentialy smdl terms, we arrive
a theformula

-2pi § e™F(E9= ag(E)e'E‘ H(z,) (17)

ResC,

where the following notation is used:

— -1+ 9 7z =2y
Yo = b Vo a n 3yn
L ) & =)
i 2 = 0
g.(E)=1e 3 2% & (2mv,) ;- BTOE (18)
2 e g Vo g V%
’ [1+%Lk1(Er‘(IO) )]_1[lel(En)- kl(En)LZ(En)]e:in’ kl ° kl(E)

Taking into account formulae (8), (13) and (17), we findly obtain the following expression for the

wavefunction

v ele) =il e o)+ & (B y/H e, 19

3. Thetunnd function and discussion

The wavefunction (19) has the same structure as in the short-range potential case (Drukarjev 1951). The
fird term in the right-hand side of (19) describes a damping transient due to the switching on of an eectric
field and spreading out of the wavepacket in time. Asis known (Baz et al 1971) this term predominates
over the second one only during asmadl time interva after switching on the fidld and a0 at very large times
when the second term becomes exponentidly smdl. Of mogt interest is the intermediate time region in
which the first term can be neglected. In this region the eectron tunnd current densty is of the form:

je(z.t) = @0 + jP(2.t)

j&(t) = (3¢/pm) g,(E) e ; (20)

i9(zt)= & 0,0, %22 y2H Y i.yzn )]
n.n¢

(m n9



The quartity j(t) is the independent of time (at Gt <<1 ) component of the tunnd current.

The oscillating in the time and the space part of current j‘EZ)(z,t) is a result of interference between the
trangtion amplitudes corresponding to the dectron jumping fromthelevel E in the wel to the neighbouring
levels. Note that in the formulafor j&(t) we have neglected the smooth dependence onz, arising from
G 10.

According to formulae (3), (19) and (20) the physcd picture of the dectron tunndling
phenomenon out of the potentiad well is as follows. Under the influence of the fidd impact due to the
switching on of an eectric field the eectron goes over from the Sationary sate in the wel to the state which
is superposition of the quasistatioinary states (i.e. of the tateswith the finitelifstime t, = G *)

and of the continuous spectra dates. The tunndling is alesking of the eectron wave smultaneoudy through

the barrier via those channels which correspond to the energy levels E(? in the wl.

Consider the case L(2mV0)}’2 < p, when there is a single bound sate in the well. In this case the
total tunnel current j(z,t) (20) reducesto the quantity j&(t), only theterm n in (20) corresponding to

E® = E being retained. Calculate the quantityg, (E) © g(E). Making use of the formula (A2.9), we can
eadily show that the following equality takes place when condition (A2.8) is satisfied:

VA
) p? ECE&®V, o4 %
Ll(E(D kl(EQLz(Eq) » 4k1( ) Vv, %V,- Eg X (21)

Puting E¢- E =E,_ - E” » DE, in(21) and using (16) and (18), we receive

2 dp &Y, - E028€E

=-e" x}’2 +1 X
o(E)=-e L By —3 &7 [1+4Lk,(E) *e (22)

While invedtigating the dectron tunndling out of the wdl, the sationary problem is usudly sudied i.e. the
eectric fidd & is supposed to act congtantly in time, without switching on and off. The solution to the
stationary Schrodinger equation Hf (z) = Ef .(z) with the Hamiltonian H = H,(z) + H,, (2) , obeying
the outgoing-wave boundary condition (Baz et al 1971, Blokhintsev 1961), is looked for. The outgoing
wave condition conssts in the requirement that outside the barrier there be only the waves that correspond
to the knocking out of the well eectrons. Compare the results of the stationary theory of tunnelling with
those obtained in this paper. To this end we derive the ationary theory formulae which are andogous to



10

118) and (19). As is seen from formula (A1.1) for f E(z), the outgoing-wave condition in the tunndling
problem being consdered is expressed by the equality
RO(E)=0 (23)

which is equivdent to the dispersive equation (15). According to (A1.1), in theregion z - 0 the electron

iEt

wavefunction supplemented with the factor e”
(19)

may be represented in the form (compare with relation

fe(zt)=GE)y H Y (z)e™ (24)

Theconstant d  isdefined by the condittion
f(2=j:(2) a z<0 ad G®O0
the wavefunctions f .(z) and j .(z) being expressed by relations (A1.1) and (A13) This condition

gives d =dexp(Lk, ). Taking into account the relationships (A1.1), (23) and (24), we have

1
E)=de B, EC xhe? 25
g(E)= <3, ng (29)
The tunnd current dengity in the Sate (24) is given by
ie, (2.0)° (ig/2m) o (2.1, (2) = 2G,e ™

The ratio of the quantities g(E) (22) and G(E) (25) is

3
4

X 7(1+1Lk, ) » (ek)” (26

QIIO

EGE

QIIO,

?7

According to (26), the eectron tunnel current caculated within the consstent non-stationary theory turns
out much smdler than in the Saionary theory. This is due to the fact that under the influence of the fied
impact the dectron is largely knocked out of the initid bound state, passng to the continuous spectra
gates. Then the wavepacket formed by these continuous spectra states is spread out in time but in the
intermediate time range mentioned above the wavepacket described by the firgt term in the right-hand side
of (19) does not make any appreciable contribution to the tunnel current.

10
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The present theory describes the case of the sudden switching on of an dectric fidd when under
the action of the field impact an intense ‘shaking’ of the systemn takes place. The stationary theory seemsto
describe the tunnelling in a different limiting case - when the dectric field is switched on adiabaticdly. The
appreciable dependence of the tunne current vaue upon the way the eectric field is switched on should be
taken into account while anaysing the experimental data on tunnelling (atom ionisation, for ingance) in an
eectric field.

Itisof interest that the eectric field has a marked effect on the character of the spreading out of the
wavepacket in time. Indeed, in the case being considered the wavepacket is spread out in time according
to the law t 72 , While in the short-range potential case it is goread out according to the law t7
(Drukarjev 1951).

Note that in the gtationary tunneling theory, in which the outgoing-wave boundary condition is used,
the wavefunction f _(z,t) (24) is exponentidly divergent & z® +¥ . Indeed, making use of the
asymptotic formulafor the Hankel function and of the formula E = E¢- iG (E¢° ReE,G>0), we obtain

f E(Z’t) » exng/\/O)(Z/b- 1+ E(yvo)}éx%g az® +¥

This difficulty is absent, in accordance with the known concluson (see, for instance, Drukarjev 1951,

Blokhintsev 1961, Nussenzveig 1972), in the non-stationary theory of tunndlling.
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Appendix 1. The stationary state wavefunctions
The solutions of the stationary Schrodinger equation with the Hamiltonian H,(z) + H,, (z) (see equation
(1)) aretheform

f El(Z) =d >{q(_ Z- L)(eiklz +g*e-iklz) +q(_ Z)CI(Z+ L)[(al +g*a*_1)eikzz +(a_1 +g*a;)e-ikzz]
+1q(2)yAHPE)R(E)+ y*H P )R (E)],
fe@=fu@,  (E>V,); (AL1)

fe(2)= a{q( z- L)e +q(- z)o(z+ L)(a_ &+ e ikzz)
+ %q(z)[y}/zH}(/?(Z)ﬁ(l)(E) + y}éH}(,:)(Z)ﬁ(Z)(E)]}’ (E <V, )

11
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Here the following notation isintroduced: H £)(z) - isthe Hankel function,

 =[em(E- V)],

-\[(ZmE))é, E>0
%-ik2:-i( )}é E<O,
a, =3(1+sk /k,)exp[iL(sk, - k)], s = #1,

S

kl = [er(vo - E)]}é’ kz =

RES(E) = 2 1p K, bx 33 gb (E )‘ (A12)

U

b(+)(E) a, L( )(Z )' a* L(+)( o) bEl-)(E)_ang)(ZO)- a—lL(r;)(ZO)'

L(z) = yAH D (2) 2 (i/k, N/ a2y H §(2)], (h=12)

g = (bt |/b ﬂb (2/k, )b (3K, /p):)

1
ol =} (4p %,/ migh - (2 b0 (@ o)l
d, :%(1+|skl/k2)exp(- is Xk, L - le), s =#1,
RE = 24p oL (z,)- A0
e 1 i
b=V, /eE, z=2y%, y =x>07(z- b+ EbN,),
zo=2_,. Yo=Y, ‘d‘ :§mx'1b|§(l)(E)|_2, x = (2mv,b? .

Thefallowing orthogonality and normalisation conditions take place

P2 e Df & (2) =d  d(EG E),
7 (2)f < (2) =d(E¢ E)

The formula for the wavefunction of the eectron sationary state with the energy  E in the well

V,(z) iswritten

j (2= d{Q(‘ Z- L)ele (COSkzL + (kl/kz)gn k, L)eklz
+q(- Doz + L2 [L+ik, [k, ) +(1- ik, /k,Je " |+a@e s} (AL

d=(k,EN,) (1 +2Lk,)%.

The normalisation constant d is defined by the condiition (z]” =1. The electron energy levels E

inthe wdl are the roots of the dispersion equation;
(K2 - k2)sin k,L - 2k k, cosk,L =0, (AL4)

12



13

Appendix 2. Calculation of the coefficients a. (E) and a.,(E).

The quantity a, (E), defined by (5) may be reedily reduced to the form

d ¥
E¢ g9

ac (E)= 4z e (QH (D2, Kk, © k,(E), (A2.1)

d =d(E). In the derivation of this formulawe have made use of the relation (A1.3).

Let usintroduce the notation

Yoo (k) = Q dzf 1 (27, (A2.2)
The coefficient a. (E) is expressed interms Y, (k) by the relation:
ac (E) = [d/(E¢- E)]wet(d/dk)Yeq (K], o) (A2.3)
Thefunction Y, (k) satisfies the equation:

eit(d/ k)Y, - (EC V, +k?/2mV,e = (2m) (1, (2),67)

z:O'

The solution of this equation obeying the condition Y, (¥ ) =0 isof the form:
k 1 (E¢V, )k (1+h)? - 10g . d.. .0
Y. lk)]=——@Q dh i- 0/ " h- k® vak(l+h)f —f - (A24
Es( ) 2me‘é’Q Wp% o 6mec ég ( + ) Ee(z)+dz Es(Z)HZ:O( )
With the aid of (A2.3) and (A2.4), we obtain the sought after relationship
I . d.. (]
s () =0l L. (EQk o0 @)+ Lo (B9 T e Y (A25)
z=0
wherethefunctions L . (E§ (n=1,2) , aredefined by the equalities
. .
L (Ed=—K & dhoa, (n)ep) - E-Vekkup o eh) -1 1
2mer : ¢ 6mer  2m(EC E)
a,(h)=1+h, a,(h) =1. (A2.6)

One can easly show that the quantity a.,(E) is defined by the right-hand side of the equality (A2.5) after

replacing f _ (2) by f ,(2)init.

13
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Write out gpproximate expression for the functions L (E 4, derived under the assumption that
k:/6mer o b>>1 (A27)
in two limiting cases.

Casel. |E¢ E|<<V, or, to be more precise,

Id(30)” <<1, g° (E¢ E)k, /et. (A2.8)
Inthis case
L (E9=(amer x,)%(2p% +e, /d@)* - g/a2b))- yan(Ee E),  (A29)
e, =1 e, =-1
Case2. V, - E¢<<V, - E~Vj, (A2.10)
In this case
2 f-
L (EQ=- 2—1m (EéVOEj(\E(? 7 g ZTfe%, (A2.12)
& =1, g, =2
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