On gquantum dynamics of the self-acting electron

V. P. Olenik,* Yu. D. Arepjev,” Ran Yanggiang," L. P. Godenko'

!Department of General and Theoretical Physics, Kiev Polytechnical Institute,
Prospect Pobedy 37, Kiev 03056, Ukraine
2| nstitute of Semiconductors Physics, National Academy of Sciences,
Prospect Nauky 45, Kiev 03028, Ukraine; e-mail: yuri@arepjev.relc.com

Abstract

The paper deals with the quantum theory of the self-organizing electrically charged
matter in the nonrelativistic approximation. Nonrelativistic limit of the fundamental
dynamical equation, describing the behaviour of the self-acting electron, isinvestigated and
energy characteristics of the system of interacting fields are obtained. The Ehrenfest
theorems and the quantum Newton equations for the self-acting electronin arbitrary external
field are derived and with their aid the non-stationary states of the particles are investigated.
Thewave functions of afree electron, corresponding to the lowest energy stationary states,
aswell asthe wave functions, describing the stationary states of the el ectron in homogeneous
electric and magnetic fields, are calculated. It is shown that the stationary state of the
€lectron in the homogeneous and constant external field is a superposition of solitons that
differ from each other in geometric shape and linear dimensions.

Introduction

This paper is a development and continuation of studies in quantum mechanics and quantum
electrodynamics ( QED ) teking into account the Coulomb sdf-acting of eectricaly charged
particles [ 1-10 ]. Basic to approach being developed is the idea of the eectron as a self-organized
elementary excitation of the charged matter field, whose geometric shgpe and Size are determined in
a sdf-conggent way from a nonlinear dynamica equation. Apparently quantum mechanics of sdf-
acting electron can be conddered as the smplest example of a theory of sdf-organization in physica
systems ( see [ 11-12] ). The notions of physical mechanisms of sdf-organization ( in particular, of
formation of partices as solitons ) as well as the methods of solving the fundamenta dynamica
equation, developed therein, are of universa nature and can be useful not only for studying systems
with eectromagnetic interaction.

In the formulation of quantum mechanics being developed the eectron wave function has
direct physcad meaning: it describes the spatid didtribution of the particle éectric charge. The
assumption that direct physica interpretation of quantum mechanics is possible was put forward for
the firg time by Schroédinger [ 13, 14 ]. The condruction of a consstent quantum model of sdf-
acting dectron [ 8 ] and the explanation of Bamer’'s spectrum of hydrogen atom [ 4, 6, 10 ] within
the theory of two sdlf-acting bodies can serve as the basis for the Schrodinger interpretation. Note
that during the last few decades the Schrodinger hypothes's attracted attention of many researches in
connection with a new agpproach to cdculation of radiative corrections not usng the notion of
vacuum fluctuations and aso in connection with an attempt to reformulate QED using only the sdf-
energy picture [ 18-21 ]. Asis emphasized in the paper by Barut and van Hudle [ 19 ], the correct
quantum equation of motion of eectron has to take into account the sdf-energy of the particle.

In Section 1 of this paper the nonrdatividic limit of the fundamenta dynamicd eguation
obtained and investigated in [ 7, 10 ] is conddered. The Lagrangian and Hamiltonian functions of the
nonreaivigic sdf-acting dectron are condructed in Section 2. Section 3 deds with the energy



characterigtics of the sdf-acting charged fidd in the nonrddtivigic gpproximation. In Section 4 the
generdization of the Ehrenfest theorem for the sdf-acting dectron taking into account the particle
spin is given. It is shown that the average sdf-acting force, acting on the particle, is a quantity of the
order of a® ( a is the fine structure constant ). In Section 5 the wave functions describing the non-
dationary dates of the eéectron in an abitrary homogeneous externd fied are obtained. The
caculation of the wave functions of the Sationary state both for the free sdf-acting particle and for
the particle in an externd field is carried out in Sections 6-8.

According to [ 9 ] the wave function of a dationary state of the eectron in homogeneous
externd fidd is a superpostion of an infinite number of sphericd harmonics, whose amplitudes
describe solitons. Ina sufficiently wesk external fiedld the main contribution to the mentioned
superpasition is given only by the firgt two harmonics. In the Appendix the transformation properties
of the wave function of sdf-acting electron under Gdilean transformation are considered.

1. The equation of motion of the electron field in the nonrelativistic
approximation

Accordingto[ 7, 10] the quantum relativistic of motion of the eectric field, taking account
of itsdf-action, isgiven by
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where b is the sdf-action constant, e and M are the charge and the mass of the dectron;
A" = A"+ AT, Al and AT are the potential and the vortex components of the 4-potential
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whee 7™ and 7™ are the vortex components of the 4-tensors 7™ and
electromagnetic field; j;‘; isthe potentia component of the 4-current dengity ™,
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Further, we shall assume that the components of the wave functions Y and Y are connected
to each other by the equdlity ( see, for example, [ 9] ),
Y =aY, a=congt (3)
Therefore we can redtrict our congderation to the egquation of motion for one component only
(for example, for Y ). It is convenient to denote

e A" =eb (A, A)= (./°,.7) (4)
and to rewrite the equation of motion (1) as \a ( =g° g)
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To go to nonrddividtic limit let’s put
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The subtitution of (6) into Eq.( 5) leads to the following set of equations for the spinors f

and c:
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Taking into account that
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( a isthefine structure constant ) and neglecting the value of the order of a?, from the second
of Egs. ( 7) we can derive:
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Taking into account the notation ( 4) and the operator identity
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it iseasy to recast the last equaion in the form ( here we reconstruct both of the wave function
components ):

ﬂaéo—}i§il-ebA—-—sH+ebA° (9)
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where H =rotA, Eq. (9) is just the desired equation of motion in the nonrelativistic approximation.
Note that in the nonrelativistic gpproximation it is convenient to use such a gauge of the 4 potentid,
inwhich its potential and vortex components are given by (see[ 8])

A= (0. A =(o.A()
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The last term in curly bracketsin Eq. (9) has the meaning of the potentia energy of the sdif-
acting eectron and can be written in the form:

eb A°(F,t) = b NGpr ¢ - F¢7F *(FGL)f (F¢t) e U(F 1) (11)

wherethe congtraint f =af , a=const (see(3))andthenotation a+a’ =N (=1) have
been used.
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In the absence of the interaction of the eectron with the vortex eectromagnetic fidd Eqg.
(9) takesthe form

iiafgzg@ iN2+u (12)
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In the case when the sdf-acting dectron interacts not only with the vortex dectromegnetic fied but
dso with an externdl field described by the 4potential Ay, = (] o, Au ), it is natural to describe the
electron motion by Eq. (9 ), in which the following subgtitution is made

bA°® bA°+j . ,bA® bA+A,,,

bH ® bH +H,,, A, =|N" Al
We proceed from the fact that the sdlf-acting ectron fiedd cannot influence the externd fidld and
therefore it is naturd to include the sdlf-action constant b in the definition of the externd fidd
potentials.

2. The Lagrangian and Hamiltonian functions

One can obtain the equations of motion ( 9) using the action principle dS =0, S= cyitL, with
the Lagrangian function

L LOl + LOZ + Lmt,l L|nt,2 1 ( 13)
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where p, =-iN; p=-iN- ebA; f, (a =12) are the components of the spinor f . Varying the
fuction of action S with respect to the dynamicd varidbles ./, and j/ of the vortex
electromagnetic field leads to the Maxwel | equations

(12- N2).7, = (12- R2).7. = 4p]. (15)
which can be transformed to the 4-dimensond form

1. Fm=qF™=-4pj"

Here and in the following the usud rule of summation over two repegting indices one of which is
upper and the other is lower, ismeant; j, isthe vortex component of the current density vector | ,

= e+t RT S SRR ) I
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Jspin



Note that the spin component of the current density vector |, isthevortex one: Kj;, =0.

It iseasy to generdize theformulae ( 13), (14 ) and ( 16) to the case of the set of n sdf-acting
particles[ 3]. The Lagrangian function of such aset of particles can be written in the form ( 13),
where L, and L, , are defined by the previousformulae (14) and Ly, and L, are expressed

by

\—>\I,~+ii:[ +iﬁ~ 1 P L = +[= l;'
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Here (f . f . ) arethe wave functlon components of the particle with mass m, and charge e,
P, =-iN-ebA,

((r.t)= ae( (08 (1) +cc) (18)

isthe eectric charge dendity. The a:tl on principle for the system is question leads to the
following equations of mation (k =1,2...,n):

qa8,0 T 1 2 q eb§H~+Uk1',Ja§kg (19)
R, 12m & 9F s 2m, Iv)éfk,-a
where U, =U, (F,t) isthe potentia energy of the partide k ,
U, (F.t)=ebgyrdr - ¢ r(ret) (20)

Thetota potentia energy of the system, including the potential energy of sdlf-action of each
particle and the energy of interaction between the particles, is given by formulae

W=-L,, = —a UL (rOF ., (1) +ec)=

__(‘jjrdjrz '7 2|- r(rl’t)r(rz’t) (21)
The vector of the electrlc current densty isof theform:
* G7 6.
j= |e§ Rf, +fRF, S (22)
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As the components of the electron wave function f , and f~a are complex, one can consider f

f.,f. and f astheindependent generalized coordinates of the eectron field. The
corresponding generdized momenta are given by

i~ ~ dL [
A oy LI ey v L
(23)
pri)=—3 - 1F ), Br=—2t =1t (W
odf(x) 2 0T af:(x) 2%

To generdized coordinates ./, and /. of the vortex electromagnetic field there correspond the
following generdized momenta
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The Hamiltonian function of the system of interacting fields is defined by

H= 8 g () () + P ()T, (4 + (4P L () + 1, (0P L (x)4+
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The Hamiltonian function can be expressed in terms of generalized coordinates f , and Fa and

generdized momenta P and IS of eectron fidd:

Ho. == 8 srliP (oot o)+ (i )(pof )
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It is easy to check up that the Hamiltonian equations
(=1 98 f(=1_dH .
S 2dP,(x) S 2dP, ()
: 1 dH = 1 dH
P = - ——=
M= 55 A0 0 2d7. (%)
coincide with the equations ( 9 ) and the equiti ons

B = dH

_ d.t . ()’ d./, (x)

coincide with the Maxwell equations ( 15 ).
Usng formulae ( 23 ) and ( 24 ) for the generalized momenta, the components ( 26 ) of

Hamiltonian function be represented in the form
Ho +Hima = gir[(pf )6t )+ 7 )pF)]- ebdjr(f s Fif +f s AT);

= ). -\
ozz—oired PN N A (27)
a=1,23 u
|nt,1 Ojr Ojr |r r.| r(Fl’t)r (FZ’t)'
(r t)=e(ff +°7)
With the Maxwell equations ( 15 ) we can find

d b - ' = M) b\ﬁ-.. = .o
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where the equdities

E =-t., E =-. (29)
are taken into account.
With the aid of the equations of moti on (9) one can obtain

%(Hm |nt2) C)jr J'\ gﬂ +E" §+ (30)
+—oir f eN A°+2§%|A°:N 2ieb (AN)A°uf+(f Uf)y
G

To transform the last addend in the right-hand Sde of the expresson ( 30 ) one uses the following
auxiliary formulae which can easly be obtained by the integration by pa’ts

o %ﬁAO—f— OjrghAO o8 K +§ﬁf % &
28 @ Q

Fi NA°+28?<| 0O = o AR fif ©
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While deriving the last equdity it has been taken into account that A is the vortex vector (i. e,
NA=0).
Considering the auxiliary formulae and the continuity equation fr /Tt = - Nj , the relationship
(30) can be written in the form

d = _»ﬂr
E(HOI |nt2) Ojr J ?’\ +E'\ g_ bOjr (31)
wherej =] (x) isthe scaar potentid ( 10 ). Further we obtain
d _qr
Py Hinu boirﬂ—J (32)

FromEgs (28),(31) and ( 32) followsthe IaN of energy conservation for the tota system of
interacting fidds
H H01+ H02 +H|nt;l. Hint,2 =ConSI (33)

3. The energy-momentum tensor of the interacting fields in the nonrelativistic
approximation

L et us define the Lagrangian function density % = ¢(x) and its componerts by formulae
L=gfF 7, Ly, = &F %or
|ntn dr fmtn (n = 1'2)
The peculiarity of the function #(x) in the problem under consideration is that its component

¥,v, depends on f, and fa both localy and no localy and there is in addition the explicit

dependence on position vector . To take into account this peculiarity let us separately caculate the
quartities ., #¢ and 1, #,,,, where the function ¥¢=9 +9%,+%,,, depends localy on
dynamical variables and their firgt derivatives with respect to space-time coordinates. One has
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The eguations of motion can be written usng the functionad derivatives of the action integra

S=(‘jth:

dS o .2 dS 0
-at. =0,
df , (x) 6} éd T7.f.(x) p
dS o . @ ds 0
- ==0 36
d./2 mﬂm d\f./2 )5 (36)

etc.
It can be easlly verified that the relationship between the functiond derivatives of the action function
S and the partid derivatives of %4 with respect to generdized coordinates of dectron field is given
by equdities

ds _ fz¢

df,(x) 1f, (x
ds T7¢ C ()
22 = U2 et () (¥,
df, (x) 1, (x)
the functiond derivatives of S coinciding with the partid derivatives of  #¢ with respect to al the
other dynamicd varigbles, for example

3 evf, (x)j (x), (37)

s _  Tv¢ | ds _ f#¢ (38)
d(f,f.0d) 107, ()" d.st (%) 9.2 (x)
etc.
Taking into account Egs. ( 34 )-( 38 ) one getsthe formula
0,0=8 985 1 qi v 07 rood
+ +ccT+
am. %aa.g 1-[mfa " 1TT[mfa ﬂ
19 199 =1 b
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which is conveniently represented in such aform
f,0m =2r (29)
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Let usintroduce the quantity

QQ“—-—SPF@ o 79I (41)
which is essentidly the potentiad component of the energy-momentum tensor of the electromagnetic
field ( the quantity ( 41 ) can be obtained from the energy-momentum tensor of ectromagnetic
field if one dropsiin it the fidd H and the vortex component of the fidd E (see[ 8] ). Taking into
account the expression

Frm=-doE, +d,E_,,

which isvdid on condition E@ =0, itiseasy to obtain the following representation:

1

qm”:-_&E E —d EZO (42)
x 4pe Qm an 2 ﬂ
The equdity
107 =-F™j_, (43)
isfulfilled.
When cdculating the right-hand side of the equality ( 39 ) we use the formula
(i =i, AL (44)
which obvioudy takes place for the following gauge of the potentia
A =(j .0) (45)
with the identity

1 roamaa m ; m;a 1 bo
ijﬂ A@@ _F@@ Jea +ﬂa§6‘9@19@ ) Eg quA p
Whichc:anbeeesilyverifiedmdtheequdity(43)oneobta'ns
1' amaa — X m m;n ao
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When choosing the gauge of the potentid in the form ( 45 ) the last equdity is written in the
following way

_rﬂ 11 q +do 7 - g”“rjg (46)
g

It is easy to see that the exprulon (46)is correct by direct verification taking into account equaity
(42) and the formulae

I :__ﬂt E@:'Nj
Usng Egs. (39) and (46), onecan derlvethe differentia law of conservation
1, 7™ =0, (47)
where
m — ¢mM m H in 1 H mn
T™=t"+bq- dbj j +§er g (48)

is the energy- momentum tensor of the system of interacting fields in nonrel ativistic gpproximeation.

To caculate the quantity t™ by the formula ( 40 ) it is convenient to write the function #¢in
the form:

- LR SR IR (TR TN T S )
bé.ia ab[ ( /A)fb+fa§ab[ﬁl(ﬂ+ZA)]?b]+8—iﬂa?AXﬂag/A)
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Taking into account Egs. (50 ) and ( 51 ), one can rewrite the formula (40 O asfollows,
o :iE(F+ﬁmf +f +ﬁmf)+8—2[(ﬂt.?A )(‘H”‘.?/A)+( t,Q/A)(ﬂm;/A)]- g™
tm= [T Yo ) (e g ) et o E)+ (07 e )-

ebA”(f K e +—p[(ﬂ”f’ )ﬂmg/ ( ( . )]

eb |~ m( )
— 1f7Is ol +l,¢/A
St BT

f+f"

sq” (d +. a/ )] g™¥; n=123

Formula ( 47) leadsto the integra law of conservetion:
S T™ = (P°, B) = const

Using therelations (42), ( 48) and ( 52 ), one comes to the formulafor the energy dengty:

T ——a (ﬂa ol )( at?/A)+i[(ﬁf)+(|6f)+c.c.]-

8p
O (s afr s T ) E
2M 8p "
Taking into account that
b s FE>=H,,°W,
8p

one obtains the law of energy conservation ( seetherdations(25), (27) and (33) ):

P =fr T% = H = congt
In the absence of the vortex e ectromagnetic field the energy of the dectron fidd is

o= Lo e Rep S e
p
Let us apply thisformulato a stationary state of eectron

fry)=e=y()  fry)=e=y()

%(?*[g ™, ]nf +f +[§ 1. ]nf~), n=223

(50)

(51)

(52)

(53)

(54)

(55)

(56)

where the components of the wavefunction y and y obey the stationary Schroédinger equation

% —+U ~§— Ea?l.g
%) Y o

U(F)=eesrdr - r§ (7 (Fdy (Fd+y *(F99(r9)
Subdtituting (56 ) into ( 55 ) and using the equdities (54 ) and ( 57 ), one can obtain
P°=NE-W

10
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where
N = Ojr( y+cc)— 1
The momentum dengty is expressed by the formula
T”O:'E(F*ﬂ”‘f +f+'ﬁ”‘f~)+
b [(ﬂt.?/AXﬂm.Z/A)+(ﬂt.g/ ( ?/) m=12,3

+ —
8p
Herefrom

P, (59)
% e[ (iR e+t (iR, )F] k=123

pAk_E el e )+l )f 1,7

where P and P, are the momenta of the electron and the vortex electromagnetic field, respectively.

Taking into account the Fourier expansion

b (7. =y &7, Je, e, (60)
k 1 =12
where V is the nomdization volume; €, €., €, =— ae the mutudly orthogona vectors
satisfying the relations
é|;| éR|¢=dll¢; é-*12| :(_ 1)| élZ| '
one finds
Py (Y R(T T (1)
P& 1=12
Note the following representation
P =— B+E, - BY 2
Ojr gt p (62)
where

8=|N" 7. B=|f 7]
For anongationary state ( A. 11) the quantities P° (55) and I5|I (59) are

—

NaeE+ M%T-W, P =NM %,

Since the wave function ( A. 11 ) descrlbes the dectron moving in the space as a whole with the
velodity #,, the formulae obtained above can be eesly interpreted in the following way. By virtue
of the fact that the normalization integra for the sdif-acting electron is negative (N =-1), the part
of physica energy and momentum is played by the quantities

-POZ%MWO+W+E and -P =M%, (63)

The quantities %M w2, W and E have the physicd meaning, respectively, of kinetic energy of

motion of the dectron as a whole, potentid energy of sdf-action and energy of the eectron in the
field of potentia well, appearing as aresult of Coulomb interaction.
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4. The Ehrenfest theorem. Force of the salf-action

Let us condgder the generdization of the Ehrenfest theorem for the sdf-acting electron [9] to the
case when the particle spin is taken into account. The mean vaues of postion vector and momentum

vector of the electronin an externd fidd (j ) inthestate f are defined by the formulae

F=gprf e p=gpirt (- iN- Al (64)
where thewave function f =f (,t) obeys the equation
ﬂf i1 . 2 e _ - .0
=} S (iN-eaf - S sH+U +4 Yf, 65
Tt 2|v|( | ) 2M iR (83)

H =rotA, U is the potentid energy of the seif-action, defined by the formula ( 11 ). Using the
equation ( 65 ), one can get

dr _ p
—=r. 66
dt M (66)
dp  .,....&- ie 16 <] ~g 1 2o~
—— = pFffCeE- —|N" H[F- ey f*{ SH™ #Y- —R(SH)yf
ar OrfTe 2|v|[ (AR Y )k;
whee E=-Nj -2 Z=P_(if-eAlmM;: RA=o.
It M
Combining therd ati ons ( 66 ), one can obtain the qumtum Newton equations.
d GrfneE eeH 2. 3\1 A +—N(SH) (67)
6 2m & E;

As the equation ( 67) |Ilustrat&s the quantum equation of mot|on depends on the eectron spin only
in the case of inhomogeneous magnetic fidd. If the externd fidd is homogeneous, the equation ( 67)
reducesto the class'cd equation of motion for the center of mass of the eectron

s

dt v H (68)
According to ( 67 ), & for the spinless particle, the center of mass of the nonrddividic eectron
moves in such away asif the force of the Coulomb self-action were absent.

Let us turn our atention now to the rddividic sdf-acting dectron. Eliminating in the
equation ( 1 ) the components of the vortex dectromagnetic fidd with the ad of Maxwdl's

equations and teking into account the extend fidd A, = (Af_,’xtht) we arive a the following
equation of mation:

~ X)6
(- 00 M b= (69)
where
&/m(x) =eb Am(x) +eA, (x)
A"(x) = (‘ji“xwd((x- xd)z)jm(xoj
Dencting the meen value of the operaior F inthe state y by F =¢pfy "Fy and using the
equation (69 ), it is easy to derive the relation

d_F: A *y+}i§a§.i- o x +o/ +g°My F-
dt tee Tr o a
el i %0 g |\/|U+E1J

é ir o a ‘Ht%



Putting in the lagt equdity F=F adF = p-./, p= |L one obtains the generdization of the

qr

Ehrenfest theorem in the relativistic case [ 22] (cf. (66) ).

dr =gry‘ay?° a; (70)

d — e iz = o ELE

at p- o/ |=dry (F+Fext)y F+F,
where

F=eb(E+a’ B),

Fo. =e(E..+a" B..)

E=-1A Qe B=R" A

Mt
~ qA ~ o, =
ext %ﬂ_NA\gxl'Bext:NA\axt

F is the sdf-acting force, Ifext is the force experienced by the particle due to the externd field.
Since the value 3 differsfrom (p- ./)/M , it is impossible to obtain from Egs. ( 70 ) the rdlativistic
equation of motion for the center of mass of the particle.

To edimate the vaue of the mean sdf-action force F it is convenient to use as the units of
length, energy and time the vaues a,, |, and 1", respectively, where a, =1/Me? is the Bohr
radius, 1, = Me*/2 istheionization energy of hydrogen atom. Let us introduce the notation:

t=ta;’, F=r,, y (x)ad* =y ¢x¢)

1;'le A"(x) = A x¢) (71)
where x¢=(t¢F¢); t¢ and F¢ are the dimensionless time and position vector. In dimensionless
notation the quantity E can bewritten asfollows ( 1,a;" isthe unit of force):

N

E=1,abre ¢ (xd) - E%Ac( xd)-

A
-%A@(x¢)+a — A(I(xdi)gy((xd: (72)
Let us expand the function A¢"(x¢) in apower serleﬁlntheflnestructureconstmt a:
L JO(terg a®N
A¢“(x¢):2NGir"‘frqE_ c? ongre ng T joferge.. (73)

Here

i€(t.7)=y¢x)dYy €x)
Further, subgtituting ( 73 ) into ( 72 ) and keeping only the largest in magnitude terms, one can
obtain

F == labNagregargre vg | LLie(xd iderd)+
|

Ap.. . T° ol
+z(r¢'r1¢)l¢)(x¢)m—éJq9(t¢rl¢g (74)
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a
2 ¢
from EQ. (74) F»a? (as fG(x¢) »a ), with F =0 for the Sationary eectron date ( asin the

dationary Sate %1: jdf“( x¢) =0 ). Thus, the formula ( 74 ) confirms the conclusion mede in [ 9] that

While deriving this formula the continuity equation N¢j¢+— JCE 0 has been used. Asis seen

in the nonrdatividic gpproximetion, taking into account only the a -order corrections, the mean
force of the salf-action is absent.

5. Non-dationary eectron states in the homogenous external field

Let us consder the sdlf-acting eectron in the externd field described by the potentias
j =-Fr, A_—[H r] (75)
where E = (0, Ey,EZ), H=(0,0,H)=const, E, =E,(t) and E, = E, t) arethearbitrary functions

of time. Taking into account the results of the previous section, it is naturd to look for the solution
of the equation ( 65 ) in the form

f=u, e(p(-' (. r))Y(r- R(1))° f.(r1), s =#1 (76)
where u, is the spinor: u; g ., g,l = R,(t) is the solution of the dassicd equation of
motion ) .

MR, =eE +dR," A, (77)
c, (t,F) and Y (F) arethe functions to be determined. Substituting ( 76 ) into (65 ) yields
19c, é- el 510
(g e, 2 RJT, (78)
L[ iR, - eAd +2eARic, + E[A” ﬁ0]9+ (R, +
M - 2
2l Rl e, Jseele r)- (Rl S (-0
o}
The notation
F-R =R, A¢=%[H' ), (79)
U(R)=be*N epRdR- REIY (RY’
was used above.
One can determine the function ¢, from the equation
Ncs+§[ﬁ’ﬁ%]:-M§0°-l50 (80)
The solution of this equation can be written in the form
cs(t,r)=-§(r[ﬁ' Ry)- 7P+ 1. (t) (81)

wherethefunction f_ (t) will be defined later. Taking into account (81 ) and ( 7)), one can
derive

14



NZc, =0

e, _ e
o= (Pl Vi) ke e, A ﬂt (82)
where V, = R, . By virtue of Egs. ( 80 )—( 82) the equation can be transformed to the form:
19, ~~P2$H1.~ =\ S\ (=
i - -iN. - eAd - U\IRNY(R/=0
} 1ﬁ 2( bJ 2“A Zhﬂ ( I R @ ( )ﬁ ( )
Defining the function f bytheequdity
2R, A (83)
one can obtain the followmg equation for the function Y (ﬁ)
él
Sl - eAf +U(R)- E% 84
L[N, o +ule)- el R)=o (o0
From ( 83) we obtain the following expression for thefunction f_(t)= f_(t):
——gjtc{P () + e(Rottb[P (td- H]]+&-ﬂ§t (85)
The generd solution of EQ. ( 77) can be represented in the form (see[ 23] ):
Ro(1)= (R Ry o) (86)
t te
R, =—2s§nw,t + Yoy (1- coswot)+&(‘)jt@tdlén[wo(t¢- t@)] Ey(t@+ Xo;
0 0

0x 0

Roy = . o (1' COSWot)+

e l\ tf
- Gt ogw, (t¢- tQJE, (t6+y,;
0 0

VVO
e t t¢ E*i
R :Vc‘pt@tazz(tar)wozu Z, W=
0 0

Thevectors R,(t) and V, (t) = R, (t) obey theinitia conditions

Ry(0) = (%, o, 2,)° T, =const
\70(0): (UOX,WOV,WOZ)O Q_;O = const

Equdities (76 ), (81 ), (85) and ( 86 ) and equation ( 84 ) completely determine the electron wave
function representing the non-gtationary state in the homogeneous externd field.

Note that the linear combinations of the functions f, (76) of theform § C.f,(F,t) ( C,

s=x1
are congtants sdtisfying the condition |C,|” +|C_,|” =1 ) are dso the solutions of Eq. ( 65).
At H=0, E=const anda H ! 0 E=0 the reslts of the paper [ 9 ] may be obtained. In
particular, &t H =0, E =congt theformulae (81), (85) and ( 86) yidds:

ﬁo(t)=%t2 + L+,




which agrees with the results of the paper [ 9].
The charge and current densities of the dectron in the state f (,t) ( 76 ) are given by (we

use the relationships ( 10 ) and ( 16 ) and assume the equdities Fs
be fulfilled ):

af , a=const, a+a =N to

ro=eN|Y/|, (87)
\I _ _ _

. =eNiV, - — A" R+ ? T ovp- Ny Ry, s=x
TV w4 2

where Y :Y(ﬁ), R=F- R,.ItisseenfromEq. (87)that for E =7, =0 thewave function (

76) describes a stationary state in which the current becomes purely vortex ( j, = .. ).

6. The free eectron

Let us congder the solutions of Egs. ( 12 )describing the dtationary states ( 56 ) of the free
electron. Redtricting oursalves to the sohericdly symmetric solutions and using the congraint ( 3 )
and the notation

Y(r)=2x(). ulr)=u(0)+2(r) (88)

we can obtain the following set of differentia equations of the second order which is equivdent to
the equations ( 57 ) (indimensond form, see[ 6] ):

) .
0
aedz-E+CiX=0, (89)
- r P
d2
d—z_-spr Ly, C=E-U(0)
]
Here
8pbN cyIr oX
z(r)=8p O'J gi s
U (0)=8pb N(‘plrr x2(r) (90)
0
The sought-for solution of the set of Egs. ( 89) is subject to the normalisation condition
¥
4p(‘}irX2(r):1 (91)
0

and may be expanded in a power seriesin the vidnity of r =0 (a = const)
X—ar(1+a1r2+ )
= 4IobNa g‘i+ alr a=-—

The potentid particle energy W (see(21) ) and itstota energy ¢ (see(63)) are expressed
by the equalities

W= G () =NEulo +zpmz() )2 (92)

E=E+W (93)
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004 A=( 4,3;+0,058)
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0,08
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0,027
0,007
-0,021

-0,041

r

-0,06 L LA 7 T 7 1 L— LA N
0 20 40 60 80 100 120 140 160

Fig.1 Wave functions of free dectron X, = X, (1) (n=1,2,3)
(the points A, = An (1; X') determine the position of extrema)
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0,357
] Al
0,301
A =(rr.)
0,257 5
n=1 A, =(25;306:107)
0,207 A,=(16,9; 7,9-107)
0,154 A,=(45,0; 3,8:10°)
0,107
Ay
0,05 n=2 Aq
n=3
0,00 AN . . . L
0 20 40 60 80
Fig.2 Densty of particle number for afree eectron ( the points
An =(r; r ) determine the position of principa maxima).
Table of the quantum state parameters of free electron
n 1 2 3
a, 0, 111 555 302 0, 022 550 636 0,009 419 618
C, 0, 610 920 251 0, 162 669 776 0, 075459 384
E, -0,651077 - 0,123 186 - 0, 050 105
&, -0, 217025 -0, 041062 - 0,016 702

Figures 1 and 2 show the plots of the wave functions X, = X (r) and particle number
densities r (1) = 4p X?(r) for the ground (n = 1) and thefirst two excited (n = 2,3) electron
gtates. In the Table the magnitudes of the prameters a,, C, E,, and &, corresponding to
the particle states indicated above, are given (we put here b =4/2 ).
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7. The dectron in constant dectric field

Let us condder a dationary date of sdf-acting dectron in eectric fidd with the intengty
= (0,0,Ef; (I) &C=const . The perturbation theory for the Schrédinger equation describing the sdif-
acting dectron behaviour in externd fidd is congructed in [ 9 ]. Here we are going to use the results

of this paper, carrying out the caculations only in the first order of perturbation theory with respect
to dectric fidd. In this goproximation only the first two spherica harmonics can be retained in the

expansions of the functions X (F) and Z(F) ( seeformulae(52)[91):

X(r)=(4p)" & X,(r)¥(ai ) (94)

1=0,1

2(F)=(4p)" & Z,(r¥,o(ai )

1=0,1

Thefunctions X, and Z, obey the set of equations (see Egs. (55)[9])

od® Z, 0, & Y
-—+C=xX, = C+er+— :

er r ﬂ 0 g 1 H 1

2

3 = - gpbNr (X2 + X2} (95)

2

&?® 2 ZzZ, 0, é Z
- —- —2+CzX, = 4C, +eJr + —=X;

dr2 r2 r g 1 8( 1 ) rH 0
2

mz-%gz =-16pbNr "X, X,

a° rog

Here

&)@,

e= , =, C=E-U(O
el 0

16 ¥ dr
Cl_?prOr_ O(r)Xl(r)’
0

E isthe energy eigenvaue of dectron in the eectric fidd. The sat of equations ( 95 ) is vdid
provided the condition
eR<<|E,| (96)
is fulfilled. In ( 96 ) R is the width of the locdization region of the wave function in zero
aoproximation, E, is the energy egenvaue of the particle in the absence of dectric field. The
first two equations of the set ( 95), if we put X, =0 in them, aincide with Egs. ( 89 ); thus,

they correspond to the zeroth gpproximation.
The desired solution of the equations ( 95 ) has to obey the conditions

4p5lr(><§(r)+ X2(r))=1, (97)
1 EEZ( )+ dr( );

and behave, when r ® 0, insuch away ( a,b are congants):
XO:ar(1+a1r2+...); Xlzrz(b+blr2+...)
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Z, :-4—§bNazr3+...; Z =- 8prabr +.
where

al—-— bl——o((C +E)a Cb)

One can see from Egs. (94) and ( 97 ) in the gpproximation being considered the dectron
wave function in the eectric field represents a superpostion of the ground and the firgt

harmonics, each of them being a solitons. If the notation
Z 2
O:TO"'U(O)’ V1:r_2+V01
1= % + (Cl + e) r
is introduced, then the firgt and the third of the equations ( 95 ) can be written in the following
ampleform
2

eed 0

gF-FE'Vo:XO =U.X,, (99)
]

2

eed 0
+E-V,=X, =U,X
g@ 1d 1 1o
Obvioudy, the quantities V, and V, play the pat of the potential energy for solitons
corresponding to the ground and the first harmonics, respectively.

The potentid energy of sdf-action of eectron W and the mean square of the orbital angular
momentum L?,
L2 = &pr Y (F)C2Y (F),
can be transformed to the form

w38 rr +22,(0)%, ()

Im o

L2=a I( +1)(‘)jr|X|m(r)|2. (100)

0
Here we have assumed that Y (F)= X (F)/r . The rest of notation is the same asin [ 9] ( see
formulae ( 29 }(32) [ 9] ). In the approximation here consdered as applied to dectric fidd, in
the right-hand sides of Egs. ( 100 ) one has to retain only two addends: | =m=0 and | =1,
m = 0 and take into account the equdities
Boo = (4p):|/2(x§ + X} ); By, = 4p1/2Xo X5
(X10:Z,0iCio) =(40)"(X,32::C),  1=01

Asareault, one can obtain
W =W, +W,;

61 o1 u
W, = Négu(o) +2p g 22, (r)(X 2 (r) + X))

A

e 0 r u
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Fig. 3  Components of eectron wave functions
X=X (r) (1=0, 1) inan eectric field ( the points
A =(r; X, ) determine the pogition of extrema)

\
8 -
6 A=(rV)

=1 A, =(37;-0,561)
4 A =(45;-0,444)
2 -
0 - Al
A, [=0

-2 -
-4 T T T T T T !
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Fig. 4 Potentid energy V, =V, (r) (1=0,1) corresponding

to the dectron wave function harmonicsin an dectric fidd

(the point Ay = (r; V| ) determine the position of minima)
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z,(r)o

¥
W, = N4p ¢sir C,r + ==X, (r)X, (r);
. e '}

¥
L* =8p prX 2(r)
0

The total energy of the eectron can be determined by formula ( 93).

The results of numericd cdculation for the quantum date which in the absence of dectric
field goes over into the ground state of the free eectron are shown in Fig. 3 and 4 ( we assumed here
tha b=+/2, e=10°, " =10"°, r" istheinitid magnitude of the variable r ). Below are given the
magnitudes of the parameters corresponding to the computer-caculated quantum date of the
eectron in dectric fidd:

a =0, 111289017 E =-0, 651 075
C =0, 609192 019 W, =0, 433518
b =-2, 768575 103 W, =5,29- 10"
C, =1,297 792- 10 ¢ =-0,217 028

L =5,8- 107

As evident from Fg. 1 and 3, the maximum height of the main harmonic of the wave function in the
eectric field isdightly smdler than of the wave function of the free dectron.

8. The dectron in constant magnetic field

The expansion of the electron wave function in magnetic fidld J¢ = (0,0,.#), . = const,
in the series of perturbation theory with respect to magnetic field isgivenin[ 9]. Following are
some refinements of the theory outlined in[ 9 ] and the results of the numericd cdculations for
the quantum state which in the absence of magnetic field goes over into the ground state of the
free electron.
Let us write down the formulae for the Fourier coeffidients B,,,, A, G, /0, Faro.( =0,2)  (

seepages 22 and 23 [ 9] ) in which the terms of higher order of smallness are taken into account:

BS 00 = (4p)-]/2 (XSZOO + XSZZO)’
. 1]/5
BSZO =p 1/2x300X520 +7\/%X5220;
AOO = (4p)]/2 (XSOOZSOO + XSZOZSZO); ( 101)

] 1/5
A= (4p) vz (XSOOZS 20 T Xs20Zs 00) +7\/% Xs20Ls 20

e 1.,.,06 e’r?
Gopo=ces+=€eTr° =X 00~ —=Xs20:
s g 6 p s 6*\/3 s

- 5 ,,0 e’r? _
Gszo_(}es"'_er +Xg20 " Xso0s
e 42

o 645

I:'5.00 = (4p)1/2Cs 20r2xs20 ’
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. 1/5
Foz = (4p) VzCs 2or2X500 +7\/%C520r2X520
Using thereaions ( 101 ) and the notation
(4p) **(X110:Z0161C10)= (X,:2:5C ); 1202
P slor“slor~slo/ ™ (Rl R IV A N

V, = z U(O)+%e2r2 +es;

Loy
r
6 2.5 z, ® &
2

V,=—=+V, + 7 Uz;UzzT"' CZ-G\E

&.|;|.o;

one gets the set equations ( cf. (68) [ 9] ):

2

ad 0

g_z'l'E' VoxX, =U, Xy,
dr ;
7]

d2
dr?

2

aed ,
g—dr2+E-V2:X2=U2Xo: (102)
1]
2 0 P2 ) o]
209, — 1epbnt x0x2+£x§j
ar® rog ré 7 &

Z,=-8pbN= (xg +X2);

It is seen from ( 102 ) that quantities V, and V, play the part of the potential energy for solitons

corresponding to the main and second harmonics of the wave function. Their asymptotic expressons
ar ® ¥ aeof theform:

2
Vo 2bN+1ezr2+eS;U2:_ e r2;
r 6 64/5
Vv, -6 BN, 5e2r2+es (103)
r? r 42

According to ( 102 ) and ( 103 ) the expansion of the wave function in perturbation series with
respect to magnetic field is valid under the condition

%eZRZ <[E,| (104)

If, in addition, the inequality 2/R << |EO| isfulfilled, then the first and third equations of the set
(102) atlarge r (butlessthan R ) can be written in the form

e’r?

2ed ?
+E_X =0; +E, —X =-—=X 105
gd_ 0 g_ Jg 0 ( )

The solution of (105) isgiven by theformula(for | "' <<r << R))
Xo=a,e'"; (106)
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g; ‘?ﬁ+| 2rzguue
e a)

2
where | :|E0|1/2, b=- 6e_J§

the locdlization region of the second harmonic is somewhat greeter than for the main one.
The sought-for solutions of ( 102 ) obey the conditions

a,, a, and b, are congants. Asis seen from ( 106 ), the width of

4pz‘ﬁr(xg + Xzz):l,
0

= o522, (0)+r 22,02

gr®¥

andfor r ® O taketheform( a and f are congtants)

X, (1+a1r2 +...); Z,=- 43.pra2r3 +..
X, = (f+flr2+...); Z,=gr°+..
where
:_9; f_-icf :-§praf;
6 14 7
C=E-U(0)- es; u(o):-izo(r)
dr r® ¥

Using the formulae like ( 100 ), one calculates the potentia energy and the mean square of the
orbital angular momentum of the eectron

W =W, +W, ;
é1 o1 u
wo:NéEu(ompojr—zo(r)( )+ x20))
e r a
¥\ Jg o
W, =4pN el r + = Z X — T
, =4p 916 é X, )Ta

¥
L* = 24p opr X 2(r)
0
Thetotd energy of the eectron is given by the formula
¢, =¢+es, €=C+U(0)+W (s=z1)

The results of the numerica caculation of the set of equations ( 102 ) are depicted in Fig. 5 (it
wasassumed that b=+/2, e=10°, " =10°).
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0,207

0,157

0,107

0,057

A=(r Xl)
A,=(2,5;0,1558)
A, =(54;3,5107

0,00

Fig. 5 The components of electron wave function X, = X, (r) (1 =0,2)
in amagnetic fidd (thepoints A = (r; X, ) determine the position of maxima)

The quantum dtate of the dectron is characterized by the following magnitudes of the

parameters.

a =0, 111 556 552

C =0, 610928 428

f =1,725128 101
C, =-8,635- 10°®

30

U (0) = -1, 262 007
W, =0, 434 055
W, = 43- 105

¢ = -0,217 024

L =0,67- 10°

40

We would like to express our gratitude for interest in the work and assstanceto V. A. Khvostov.
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Appendix
Transformation properties of the self-acting electron field

under the Galilean transformation

Let us consder the inettid frame of reference K¢ moving relative to the reference frame K
with aveocity «, = const . The space and time coordinates in these reference frames are connected
with each other by the Galilean transformation

ré=r- z,t, té=t (A1)

We demand that the fundamental equation of motion be form-invariant under the transformation
(A.1). Thismeansthat if in the reference frame K ¢ the dectron wave function Y €F ¢td) obeys
the equation

T .., 2 N¢ card O o
|W:Y((r ¢t©_g- N+U((r Qt(I)BY ¢r ¢, (A.2)
U 4T ¢t) =be® cpirdr ¢ r*lfr'l(\? ¢(rotdy droed + c.c.),
thenin K thewave function of the partidle Y (F,t) must satisfy the equation

(m)%v (7 1), (A3)

U(F.t)=be ¢gn|r- | (Y ( (F,t)Y rl,t)+c;c)
The transformation law for the wave function is written as
Y (F,t)=LY ¢réeg (A4)

o PR
|ﬁY(r,t)—

where L = L(F ¢t isthe sought-for function obeying the condition

L'L=1 (A5)
Substituting ( A.4) into the second of Egs. ( A.3), one can easly show that
u(r,t)=U¢r¢t (A6)

We next substitute ( A.4 ) into ( A.3) and take into account the equaities(A.1) and (A.6) and
the rdaionships

1:1-;} l 1:i
¢ °qre’ ¢ qre
Asaresult, we obtain
Z . LN A _ N (g
el Ol&gwswo-(m) wover My oo (an)
&te g | & M § 2M

The requirement that dl thetermsin ( A.7) involving K¢y ¢ vanish leads to the equation
Ne =iM %L
which may be solved by the subdtitution
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L = exp(iM %, F§f (t9 (A.8)
Subgtituting (A.8) into ( A.7) yields the equation

E__EM"Z]‘
e 2
with the solution
M7 O
f =Cexpgi ”°t¢ (A9)

2

Congtant C is defined by the condition ( A.5 ):C =1 up to an unessentia numerica phase factor.
Thus

L = expg?zm B2CHIM BT q9 (A.10)
If in the reference frame K ¢ the dectron state is described by the wave function
Y €r¢td =e = (Fd, E =cons,

then by virtue of (A.4) and ( A.10) the dectron wave functionin K isgiven by

M @ ”o

Y (F.t)= exp.wé + —t+I|\/|v0 Z] (F- %) (A11)

%)

Note that the symmetry being studied of the equation of motion for the dectron fidd is
approximate. Indeed, if the electron dtate in the reference frame K is sationary, i. e. the particle
trested as a unit is a red, then the dectric current and the vortex eectric field in this Sate vanish

j¢=E£=0. However, in view of the Lorents transformation, there will appear in K both the
eectric current and the vortex dectric field (T 10, E. ¢ O) which were not taken into account in
Eqg. (A.3). Hence equalities ( A.4) and ( A.10) aong with Eqg. ( A.3) are vdid only provided that
the vortex fdds j. and E, are neglected. To estimate the accuracy with which Eq. ( A.3) is form-

invariant, let us rewrite Eq. (9 ) in terms of the dimensionless time t¢ and radius-vector ¢ ( see the
notation ( 71) ):

gq—o h ﬁ..2 A gq*o
120 te, 1 a0 apefl A¢g+bA¢’y 3 (A12)
MY ¢ 1§ e 20 T2 trre 5 béva;,

Here the quantities Y ¢ and AC" are defined by ( 71 ). According to ( A.12) the terms in the equation
of motion involving the vortex fidd are of the order of a2 (as A¢» a ). Thus, the symmetry of the

equation of motion considered above is valid provided the a ?-order terms are ignored.
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