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Abstract—First principles should predetermine physical geometry and dynamics both together. In the
“algebrodynamics” they follow solely from the properties of biquaternion algebra B and the analysis over B.
We briefly present the algebrodynamics over Minkowski background based on a nonlinear generalization to
B of the Cauchi—Riemann analyticity conditions. Further, we consider the effective real geometry uniquely
resulting from the structure of B multiplication and found it to be of the Minkowski type, with an additional
phase invariant. Then we pass to study the primordial dynamics that takes place in the complex B space
and brings into consideration a number of remarkable structures: an ensemble of identical correlated matter
pre-elements (“duplicons”), caustic-like signals (interaction carriers), a concept of random complex time
resulting in irreversibility of physical time at macrolevel, etc. In partucular, the concept of “dimerous
electron” naturally arises in the framework of complex algebrodynamics and, together with the above-
mentioned phase invariant, allows for a novel approach to explanation of quantum interference phenomena

alternative to recently accepted wave—particle dualism paradigm.
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1. STATUS OF MINKOWSKI GEOMETRY
AND THE ALGEBRODYNAMICAL
PARADIGM

A whole century after German Minkowski intro-
duced his famous conception of the 4D space—time
continuum, we come to realize the restricted nature
of this conception and the necessity of its revision,
supplement and derivation from some general and
fundamental principle.

Indeed, formalism of the 4D space—time geometry
was indispensable to ultimately formulate the Spe-
cial Theory of Relativity (STR), to ascertain basic
symmetries of fundamental physical equations and
related conservation laws. It was also the Minkowski
geometry that served as a base for formulation of the
concept of curved space—time in the framework of the
Einstein’s General Theory of Relativity (GTR).

Subsequently, Minkowski geometry and its
pseudo-Riemannian analog have been generalized
via introduction of effective geometries related to
correspondent field dynamics (in the formalism of
fiber bundles), or via exchange of Riemannnian
manifold for spaces with torsion, nonmetricity or
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additional “hidden” dimensions (in the Kaluza—
Klein formalism). There have been considered also
the models of discrete space—time, the challenging
scheme of causal sets[1] among them.

However, none of modified space—time geometries
has become generally accepted and able to replace the
Minkowski geometry. Indeed, especial significance
and reliability of the latter is stipulated by its orig-
ination from trustworthy physical principles of STR
and, particularly, from the structure of experimentally
verificated Maxwell equations. None of its subsequent
modifications can boast of such a firm and uniquely
interpreted experimental ground.

From the epoch of Minkowski we did not get better
comprehension of the true geometry of our World, its
hidden structure and origination. In fact, we are not
even aware whether physical geometry is Riemannian
or flat, has four dimensions or more, etc. Essentially,
we can say nothing definite about the topology of
space (both global and at microscale). And, of course,
we still have no satisfactory answer to sacramental
question: “Why is the space three dimensional (at
least, at macrolevel)?” Finally, an “eternal” question
about the sense and origin of physical time stands as
before on the agenda.

Meanwhile, the Minkowski geometry suffers itself
from grave shortcomings, both from phenomenolog-
ical and generic viewpoints. To be concrete, complex
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structure of field equations accepted in quantum the-
ory results, generally, in string-like structure of field
singularities (perhaps, it was first noticed by Dirac[2])
and, moreover, these strings are unstable and, as a
rule, radiate themselves to infinity (see, e.g., [3] and
the example in Section 2).

Another drawback (exactly, insufficiency) of the
Minkowski geometry is the absence of fundamental
distinction of temporal and spatial coordinates within
its framework. Time enters the Minkowski metrical
form on an equal footing with ordinary coordinates
though with opposite sign. In other words, in the
framework of the STR geometry time does not reveal
itself as an evolution parameter as it was even in
the antecedent Newton’s picture of the World. At
a pragmatic level this results, in particular, in the
difficulty to coordinate “times” of various interacting
(entangled) particles in an ensemble, in impossibility
to introduce universal global time and to adjust the
latter to proper times of different observers, or in
the absence of clear comprehension of the passage of
local time and dependence of its rate on matter. All
these problems are widely discussed in physical liter-
ature (see, e.g., [4]) but are still far from resolution.

However, the main discontent with generally ac-
cepted Minkowski geometry is related to the fact that
this geometry does not follow from some deep log-
ical premises or exceptional numerical structures.
This is still more valid with respect to generaliza-
tions of space—time structure arising, in particular,
in the superstring theories (11D spaces) and in other
approaches for purely phenomenological, “technical”
reasons which in no way can replace the transparent
and general physical principles of STR, of relativity
and of universal velocity of interaction propagation.

At present, physics and mathematics are mature
enough for construction of multidimensional geome-
tries with different number of spatial and temporal
dimensions. Moreover, they aim to create a general
unified conception from which it would follow definite
conclusions on the frue geometry of physical space
and on the properties and meaning of physical time,
on the dynamics of Time itself!

In most of approaches of such kind the Minkowski
space does not reproduce itself in its canonical form
but is either deformed through some parameter (say,
fundamental length and mass in the paradigm of
Kadyshevsky [5]) under correspondence with canon-
ical scheme, or changes its structure in a radical
way. The latter takes place, in particular, in the the-
ory of Euclidean time developed by Pestov [6] (in
this connection, see also [7]), in the concept of Clif-
ford space—time of Hestenes—Pavsic (see, e.g., [8,
9]), in the framework of 6D geometry proposed by
Urusovskii [ 10], etc.

PHYSICS OF ATOMIC NUCLEI

KASSANDROV

At a still more fundamental level of consid-
eration, one assumes to derive the geometry of
physical space—time from some primordial principle
encoding it (perhaps, together with physical dy-
namics). One can try to relate such an elementary
Code of Nature with some exceptional symme-
try (theory of physical structures of Kulakov [11]
and binary geometrophysics of Vladimirov [12]),
group or algebra (quaternionic theory of relativ-
ity of Yefremov [13] and algebrodynamics of Kas-
sandrov [14, 15]), with algebraically distinguished
geometry (Finslerian anisotropic geometry of Bo-
goslovsky [16] and geometry of polynumbers of
Pavlov [17]) as well as with some special “World
function” (metrical geometry of Rylov [18]).

Generally, all the above-mentioned and similar
approaches affecting the very foundations of physics
differ essentially one from another in the charac-
ter of the first principle (being either purely physical
or abstract in nature), in the degree of confidence
of their authors to recently predominant paradigms
(Lorentz invariance, Standard model, etc.) and in
their attitude towards the necessity to reproduce, in
the framework of the original approach, the principal
notions and mathematical insrumentation of canon-
ical schemes (of Lagrangian formalism, quantization
procedure, Minkowski space itself, etc.). In this re-
spect the neo-Pythagorean philosophical paradigm
professing by the author[19—21] seems most consis-
tent and promising, though difficult in realization.

Accordingly, under construction of an algebraic
(logical, numerical) “Theory of Everything” one
should forget all of the known physical theories
and even experimental facts and to unprejudicely
read out the laws of physical World in the internal
properties of some exceptional abstract primordial
structure, adding and changing nothing in the course
of this for “better correspondence with experiment”.
In this connection, one should be ready that physical
picture of the World arising at the output could have
little in common with recently accepted one and that
the real language of Nature might be quite different
from that we have thought out for better description
of observable phenomena. In this situation none
principle of correspondence with former theories
could be applied.

We have no opportunity to go into details of the
neo-Pythagorean philosophy, quite novel and radi-
cal for modern science, sending the reader to [19—
21]. Instead, in Section 2 we briefly present its re-
alization in the framework of the “old” version of
algebrodynamics developed during the period 1980—
2005 [14, 15]. Therein an attempt has been under-
taken to obtain the principal equations of physical
fields and the properties of particle-like formations as
the only consequence of the properties of exceptional
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quaternion-like algebras, exactly, of the algebra of
biquaternions B.

We have forcible arguments to regard this attempt
successful. From the sole conditions of B analitivity
(generalization of the Cauchy—Riemann equations,
see Section 2) we were able to obtain an unexpectedly
rich and rather realistic field theory. In particular,
as a principal element of the arising picture of the
World there turned to be a flow of light-like rays
densely filling the space and giving rise to a sort of
particle-like formations at caustics and focal points.
Such a primordial, matter generating structure has
been called the Flow of Prelight. From mathemat-
ical point of view, this flow is defined by the fwistor
structure of the first equations for biquaternionic field,
whereas geometrically it represents itself a congru-
ence of null rays of a special type (namely, shear-
free), below—the generating congruence.

Meanwhile, the “geometrical scene” on which the
algebraic dynamics displays itself has been, in fact
“by hands,” restricted to a subspace with canon-
ical Minkowski metric, to ensure the Lorentz in-
variance of the scheme. Such a procedure was in
evident contradiction with the whole philosophy of
algebrodynamics, since corresponding subspace does
not even form a subalgebra of B and is thus in no way
distinguished in the structure of B algebra. From a
more general viewpoint, neither in our old works nor
in those of other authors there has been found any
space—time algebra, that is, ascertained an alge-
braic (“numerical”) structure which could naturally
induce the Minkowski geometry (or include the latter
as its part).!)

However, in 2005 in [22] we have demonstrated
that, under a thorough consideration, the primordial
complex geometry of B algebra unavoidably induces
a real geometry just of the Minkowski type. In this
scheme, the additional coordinates of (8D in reals)
vector space of B are naturally compactified and be-
have like a geometrical phase suggesting thus a
geometrical explanation of the wave properties of
matter in general. In the following, this geometry has
been called the phase extension of the Minkowski
space. Its derivation and simplest properties are pre-
sented in Section 3.

Discovery of the novel geometry induced by the
primordial algebraic struture of complex quater-

nions?), opened wide perspective for construction of

DHestenes was one of the first to consider the concept of
space—time algebra [8]. We think, however, that his favourite
16D Dirac algebra cannot in fact be considered in this role
since the additional dimensions have no natural physical
interpretation.

DThe algebra B is distinguished as a unification of two excep-
tional (associative with norm and division) algebras, namely
of complex numbers and of Hamilton’s quaternioins.
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a completed version of algebrodynamics [23, 24].
In particular, it turns out that just (and only!) in
the primordial complex space there may be realized
one of the most interesting and original ideas of
Wheeler—Feynman about “all identical electrons as
one and the same electron”, in its distinct positions
on a unique world line. In [23] the set of copies of
the sole “generating charge” correlated in dynamics
has been called the ensemble of “duplicons.” We
consider geometrodynamical properties of duplicons
and related particle-like formations in Section 4.

In Section 5 a naturally arising concept of com-
plex time is presented. Indeed, already in the previous
version of algebrodynamics (on the real Minkows-
ki background) the temporal coordinate is distin-
guished in a natural way as an evolution parame-
ter of the primordial biquaternionic (and associated
twistor) field: the generating Prelight Flow is identi-
fied with the flow of time [19, 21]. Now, in the complex
pre-space such a parameter unavoidably turns to be
two-dimensional, and the related order of sequence of
events—indefinite. Thus, in the framework of initially
deterministic “classical” theory there arises inevitable
uncertainty of evolution of states related to effec-
tively stochastic alteration of the evolution parameter
itself on the complex plane; we are led, therefore, to
accept the concept of complex random time. On the
other hand, existence of geometrical phase makes it
possible to suggest a novel treatment of the phenom-
ena of quantum interference, alternative to gener-
ally accepted concept of wave—particle dualism. In
particular, such a treatment relates the notion of the
phase of wave function to the classical action of a
particle quite in the spirit of Feynman’s version of
quantum theory. Consideratons of these issues con-
clude the paper.

2. ALGEBRODYNAMICS
OVER MINKOWSKI SPACE

Biquaternionic (B) algebrodynamics is completely
based on the (proposed by the authorin 1980) version
of noncommutative, including biquaternionic, analy-
sis, that is, on generalization of the theory of functions
of complex variable to the case of noncommutative
algebras of quaternionic type. This version is exposed
in detail in the monograph [14] (where one can find
references to preceding works) and in the recent re-
view [15].

Essentially, the whole structure of the theory of
functions of B variable Z € B follows from invariant
definition of a differential dF of such, differentiable
in B, function F': Z — Z (a direct analog of an an-
alytical function in complex analysis). Specifically, in
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account of associativity yet non-commutativity of the
algebra one has

dF =P *xdZ U, (1)

where ®(Z), U(Z) are some two auxiliary functions
formerly called (left and right) semi-derivatives of
F(2).

Relation (1) explicitly generalizes the well-known
Cauchy—Riemann conditions. Indeed, in the case of
commutative algebra of complex numbers it acquires
a familiar form

dF = F' % dZ, (2)

with F’:= ® « ¥ being an ordinary derivative of
an analytical function F(Z) of complex variable Z.
Writing (2) down in components one comes to the
standard Cauchy—Riemann system of equations.
Thus, requirement of invariance of the differential (2)
represents itself one of a number of equivalent ver-
sions of complex analysis suitable, moreover, for
its generalization to a noncommutative case in the
form (1). Note that such version was, perhaps, first
proposed by Sheffers [25] for construction of the
analysis over an arbitrary commutative—associative
algebra and nearily after a century used by Vladimirov
and Volovich [26] for generalization to superalgebras.

Remarkably, in the case of real Hamilton quater-
nions Q the proposed conditions (1) reproduce an-
other exceptional property of complex analysis,
namely, the conformity of correspondent mapping
implemented by any analytical function [27, 28].
However, since the conformal group of Euclidean

space EF under k& > 3 s finite (exactly, 15-parametrical
for k = 4), quaternionic analysis built on the base
of relation (1), turns to be unattractive in respect of
physical applications.

When, however, one passes to the case of
B algebra (i.e., under complexification of Q) the class
of differentiable (in the sense of (1)) functions
essentially expands due to special elements of B—
null divizors (see details in [14, 15]; corresponding
mappings have been called degenerate conformal).
In this way we naturally come to formulate the first
“interpretational” principle:

In the paradigm of B algebrodynamics there
exists a unique fundamental physical field. This is
a (essentially complicated and even multivalued)
function of B variable obeying the conditions of
B differentiability (1)—the only primordial “field
equations”. All of the other “fields” arising in
the scheme are secondary and can be defined
through (semi)derivatives, contractions, etc. of
the input B field. Their equations also follow from
the “master equations” (1).
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Realization of this program requires, meanwhile,
to resolve the problem of relationship of the 4D com-
plex coordinate space Z, vector space of B algebra,
to the Minkowski physical space—time. As it was
already mentioned, correct correspondence between
these spaces has been ascertained not long ago in
our works and leads to a principally novel view on
the geometry of space—time (see below). As to this
section, we shall expose only the former version of
algebodynamics in which the coordinate space Z is
forcibly restricted onto the subspace with Minkowski
metric, in order to guarantee the Lorentz invariance
of the scheme and to avoid the problem to prescribe a
particular meaning to additional “imaginary” coordi-
nates.

Specifically, it is well known that the biquaternion
algebra B is isomorphic to the full 2 x 2 matrix al-
gebra over C. Further on we shall use the following

two equivalent matrix representations of an element
Z € B:

u w
Z: =

p v

20+ 23 21 — 12 3)

21 +’i22 Z0 — %3

through four complex “null” {u,w,p,v} or “Carte-
sian” {z,}, p =0,1,2,3, coordinates of a biquater-
nion Z, respectively. Therefore, the 4D complex
vector space of B possesses a natural complex
(quasi)metrical form correspondent to the determi-
nant of representative matrix (3),

D=2 2222

(4)

This form turns into the Minkowski pseudo-Euclidean
metric if only one considers the coordinates z, —
x, € R as reals. This corresponds to restriction of
a generic matrix (3) to a Hermitean one Z — X =
X7T. However, we do not intend to restrict, in a
similar way, the “field” matrices associated with
functions F(X) of the space—time coordinates X =
{x,}, since the principal physical fields (especially in
quantum theory) are considered as complex-valued.
Thus, we come to the second interpretational prin-
ciple of the considered version of algebrodynamics:

In B algebrodynamics the coordinate physical
space—time is represented by a subspace of the
4C vector space of B correspondent to Hermitean
2 x 2 matrices X = X with determinant being
just the Minkowski metric. After such a restriction
the whole algebrodynamical scheme becomes
Lorentz invariant by itsel].

On a coordinate “cut” correspondent to the
Minkowski space first conditions of B differentiability
take the form

dF = ® % dX + U (5)
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and represent themselves a sort of “master equations”
for some algebraical field theory which uniquely
determines all its derivable properties. It is also
noteworthy that none Lagrangians, commutation
relations or other additional structures are used in
the theory under consideration. Moreover: system of
equations (5) turns to be overdetermined and does
not allow for any generating Lagrangian structure.

Consequently, overdetermined character of the
primordial algebrodynamical relations (5), together
with nonlinearity of the arising field equations (see
below), makes it possible to consider B algebro-
dynamics as a theory of interacting fields (and
“particles” with rigidly fixed, “self-quantized” char-
acteristics, see below).

As for particles, in the classical theory (like alge-
brodynamics in its original form) in the capacity of
those one can obviously take either regular (soliton-
like) or singular field formations localized in 3-space.
Now we are ready to formulate the last (third) inter-
pretational principle completing the set of first state-
ments of algebrodynamical scheme:

In the framework of B algebrodynamics, “par-
ticles” (particle-like formations) correspond to
(point or extended but bounded in 3-space) sin-
gularities of the biquaternionic field or its deriva-
tives. The latters may be put into correspondence
with singularities of secondary (Maxwell, Yang—
Mills, and other) fields associated with any dis-
tribution of the primary B field. Shape, spatial
arrangement, characteristics, and temporal dy-
namics of these particle-like formations are again
completely determined by the properties of the
master algebrodynamical system of equations for

B field (5).

[t should be noted that symmetries (relativistic and
conformal among them) of system (5) are considered
in detail in the review [15]. Gauge and twistor struc-
tures specific for system (5) are also described therein
(below we shall return to some of them). Let us now
briefly review principal properties and consequences
of the B algebrodynamics (based solely on the condi-
tions of B differentiability (5)).

1. Each matrix component S(z,y,z,t) of a
B-differentiable function F'(X) satisfies the complex
eikonal equation

(&) (&) -G () e

This nonlinear, Lorentz and conformal invariant
equation substitutes the Laplace equation in complex
analysis and form the basis of the algebraic field
theory.
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2. Primary conditions (5) can be reduced to a
simpler system of equations of the form

¢ = ddX¢E (7)

for effectively “interacting” 2-spinor field £(X) =
{€a}, A=1,2, and potentials ®(X) = {P 44/} of a
complex gauge-like field (see for details [15].

3. Integrability conditions of reduced over-
determined system (7) are just the self-duality
conditions

F=iF* (8)

for the field strengths of gauge potentials ® 4 4/. Con-
sequently, complexified Maxwell and SL(2,C) Yang—
Mills free equations are both satisfied on the solutions
of master system (7).

4. A field of a null 4-vector k,: k'k, =0 can
be constructed from fundamental 2-spinor £(X) as
follows:

ku = §+Uu€a 9)

where o, = {I,04}, a =1,2,3, is the canonical ba-
sis of 2 x 2 matrices. As a consequence of master
system (7), the null congruence of rays tangent to
k,, is rectilinear (geodetic) and shear-free. This con-
gruence of rays plays an extremely important role in
algebrodynamics; below we shall call it generating
congruence®). In the context of algebrodynamics it is
important that an effective Riemannian metric g, of
a special form

G = N + M X)k,k, (10)

(the so-called Kerr—Schild metric [32]) may be put
in correspondence with any B field or associated
generating congruence. This is a deformation of the
flat Minkowski metric 7, preserving all the defining
properties of generating congruence. Note that a seli-
consistent algebrodynamical scheme over a curved
space—time background has been developed in [33].

5. In contrast to ordinary nonlinear field mod-
els, in the algebrodynamics it turns to be possible
to obtain general solution of the master system of
equations (7) or(5) in an implicit algebraic form. The
procedure is based upon the (well-known in GTR)
Kerr theorem[32, 34] that gives full discription of null
shear-free congruences on the Minkowski or Kerr—
Schild background, and makes also use of a natu-
ral generalization of this theorem [35, 36], namely,
of general solution of the complex eikonal equation
obtained therein. Briefly, the procedure of searching

9 Congruences like these naturally arise in the framework of
GTR and were widely studied, in particular, by Newman [29)],
Kerr [30], and Burinskii [31].
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the solutions of eikonal equation and associated con-
gruence can be desribed as follows (for details see[15,
36]).

Using gauge (projective) symmetry, one reduces
fundamental spinor £(X) to the ratio of its two com-
ponents choosing, say,

¢ = (1, g(X)); (11)

then any solution of the algebrodynamical field
theory is defined via the only complex function
g(x,y, z,t)—component of the projective 2-spinor €.

In turn, any solution for g(X) is obtained in the fol-
lowing way. Consider an arbitrary (almost everywhere
smooth) surface in the 3D complex projective space
CP3; it may be set by an algebraic constraint of the
form

(g, 7, 7%) =0, (12)

where II(...) is an arbitrary (holomorphic) function
of three complex arguments. Let now these latters be
linearily linked with the points of Minkowski space
through the so-called incidence relation [34]

7= X¢ (13)

or, in components,

1 2

T =wg+u, TO=vg+p, (14)

where in the considered case of real Minkowski space
the coordinates (3) u,v = ¢t & z are real and p,w =
x £+ iy complex conjugated. It is known that two
spinors &, T related with points X via the incidence
relation (13) or (14) form the so-called projective
twistor of the Minkowski space [34].

After substitution of (14) into equation of gener-
ating surface (12) the latter acquires the form of an
algebraic equation

(15)

with respect to the only unknown g, whereas the
coordinates {u,v,p,w} play the role of parameters.
Resolving the equation above at each point of the
Minkowski space X, one obtains some (generally
multivalued) field distribution g(X).

In a rather puzzling way (the proof may be found,
say, in [37, 38]), for any generating function I1
and any continious branch of the solution under
consideration the field g(X) identically satisfies
both fundamental relativistic equations—linear
wave equation Og = 0 and nonlinear equation of
complex eikonal (6). Correspondent spinor £ (in
the gauge (11)) satisfies meanwhile the equations of
shear-free null congruences and, according to the
above-mentioned Kerr theorem, all such congruences
can be obtained with the help of the exposed algebraic
procedure.

(g, wg + u,vg+p) =0
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6. It has been demonstrated in [39, 40] that the
complexified electromagnetic field associated with
fundamental spinor £ (it identically satisfied self-
duality conditions (8) and, thus, the homogeneous
Maxwell equations) can be directly expressed through
the function g (obtained as a solution of algebraic
constraint (15)) and its derivatives {II4, 145} with

respect to the twistor arguments {74}, A=1,2.
Specfically, for spintensor of electromagnetic field
strength ¢ 45 one gets

1 I d [(1I411p
WYAB = P AB dg P )

with P := dIl/dg. Strengths of the associated Yang—
Mills field can also be represented algebraically
via (16) and the spinor g itself.

7. It can be seen from representation (16) that the
electromagnetic field strength turns to infinity at the
points defined by the condition

4 om
~dg — Og

Similar situation takes place for singularities of as-
sociated Yang—Mills field and the curvature field of
effective Kerr—Schild metric (10) (see [31, 32, 37]).
Therefore, in the context of B algebrodynamics one is
brought to identify particles with locus of common
singularities of the curvature and gauge fields. It
is also reasonable to assume under this identification
that, instantaneously, particle-like singularities are
bounded in 3-space.*)

8. With respect to the primary C field g(X) ob-
tained from constraint (15), condition (17) defines its
branching points. Geometrically, this corresponds
to caustics of the light-like rays of generating con-
gruence. Generally speaking, instead of the primary
B field and correspondent multivalued field g(X) one
can equivalently consider the fundamental congru-
ence consisting, generically, of a (great) number of in-
dividual branches (“subcongruences” [36]) and form-
ing caustics-particles at the points of merging of rays
from some two of them, i.e., at the envelope. This all-
matter-generating primordial structure in[19, 21, 36]
has been called the prelight flow, or the “Prelight.”

9. At the same time, existence of the Prelight flow
immediately distinguishes the temporal structure®).
Indeed, incidence relation (13) preserves its form un-
der a one-parametrical coordinate transformations of
the form

(16)

+ wll; 4+ vlly = 0. (17)

Tog > Tog+Ngs, t—1+s, (18)

YFor string-like singularities expanding to infinity and found,
e.g., in[37] another interpretation is needed (cosmic strings,
etc.).

% Actually, this is true for any twistor structure in general.
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ngng =1, s €R,

corresponding to a translation in 3-space along each

of rectilinear rays of the congruence, i.e., along spatial
directions specified by the unit vector n defined as

_ghog

§7¢

{g+9%i(g—9"),1—9g9"}.

(19)

B 1+ gg*

Under such transformations physically correspon-
dent to the process of propagation of the principal
field with universal velocity V' = ¢ = 1, all of the three
components of the projective twistor are preserved in
value, as well as the direction vector n itself. Then, in
accord with representation (18), one can regard these
transformation as a prototype of the course of time
and the Prelight Flow itself as the Time Flow. In more
details these issues were considered in [21, 36], and
in Section 5 we shall see in what an interesting way
they are refracted under introduction of complex pre-
space.

10. Particles identified with common singularities
of gauge and curvature fields exhibit a number of
remarkable properties specific for real matter con-
stituents. The most interesting is, perhaps, that of
self-quantization of electric charge. This property
follows from over-determinance of master system (7)
and self-duality of associated field strength (8) and
is, partially, of topological origin. According to the
quantization theorem proved in [41]), for any isolated
and bounded (i.e., particle-like) singularity of elec-
tromagnetic field (16) electric charge is either null
or necessarily integer multiple to some minimal, ele-
mentary value, namely, to the charge of fundamental
static solution to B equations (7). The latter is a direct
analog of the well-known Kerr—Newman solution in
GTR. It follows from twistor constraint (12) with
generating function IT of the form

Il = gr — 7 4 2iag = wg® (20)
+2(z4+da)g—p=0, z:=(u—wv)/2,
resolving which one obtains the two-valued solution

I T+ 1y
I=24r = z4ia+ /22 + 2+ (z +ia)?’
a € R.

(21)

With the above solution one can associate the fa-
mous Kerr congruence with caustic of the form of
a singular ring of radius a correspondent to the lo-
cus of branching points of function (21). Particularly,
in degenerate case a = 0 of a point-like singularity
the associated via (16) electric field is the Coulomb
one but electric charge ¢ of singularity is strictly
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fixed in absolute value (in the accepted normaliza-
tion ¢ = £1/4)[14, 28]. Correspondent effective met-
ric (10) is just the Reissner—Nérdstrem solution of
the Einstein—Maxwell equations.

In a general case a # 0 solution (21) leads to
the field and metric exactly correspondent (under ad-
ditional requirement on electric charge to be unit!)
to the above-mentioned Kerr—Newman solution (in
the regime of a naked singularity free of horizon).
Carter [42] was the first to notice that correspondent
gyromagnetic ratio for this field distribution is ex-
actly equal to its anomalous value for Dirac fermion.
This stimulated subsequent studies (of Lopez, Is-
rael, Burinskii, Newman, et al.) in which the Kerr
singular ring, with associated set of fields, has been
regarded as a model of electron. Note that in the
algebrodynamical scheme this consideration is still
more justified since the electric charge therein is nec-
essarily fixed in modulus and may be identified as the
elementary one. Thus,

In the [ramework of B algebrodynamics over
Minkowski space the electron can be represented
by the Kerr singular ring (of Compton size)
related to a unique static axisymmetrical so-
lution (21) of equations (7), or of the con-
straint (15).

11. A number of other exact solutions of the initial
algebrodynamical equations and of related eikonal,
Maxwell, and Yang—Mills equations have been ob-
tained in [36, 41], among them a bisingular solution
and its toroidal modification [38]. They correspond to
generating function II in (15) quadratic in g. More
complicated solutions demand the computer assis-
tance for solving the algebraic relation (15). However,
the (most interesting) structure of singular loci of
these distributions can be determined through elimi-
nation of the unknown g from the set of two algebraic

equations (15) and (17)8). The complex equation aris-
ing under the procedure

(z,y,2,t) =0 (22)

represents itself the equation of motion of particles-
singularities and, moreover, at a fixed instant fixes
their spatial distribution and shape. In this way, we
have examined the structure of singularities for com-
plicated solutions of master equations and associated
biquaternionic and electromagnetic fields. As for the
latter, there has been obtained a peculiar solution
to free Maxwell equations (!) describing the process
of annihilation of two unlike (and necessarily unit)
charges, with accompaning radiation of a singular

%1n the case of polinomial form of generating function II the
procedure reduces to determination of the resultant of two
polinoms and can be easily algorithmized.
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wave front [36], a class of the wave-like singular
solutions [40], etc.

12. If one restricts itsell by generic solutions
to master equations (7) or to associated Maxwell

equations’), then their singular locus will (instan-
taneously) represent itself as a number of one-
dimensional curves—“strings.” Generally, these
strings (though neutral or carrying unit charges) are
unstable in shape and size with respect to a small
variation of parameters of the generating function
II. As an example, consider a special deformation
of the Kerr solution and congruence [3] defined
by the following modification of the Kerr generating
function (20):

Il = gr' (1 —ih) — 7*(1 + ih) + 2iag,  (23)

in which the parameter h € R enters in addition to
the standard Kerr parameter ¢ € R. As a result, from
the constraint II = 0 one obtains a novel solution
for function ¢ that defines still axisymmetrical but
now time-dependent generating congruence of rays.
[ts caustic defined by the branching points of g is
represented by a uniformly collapsing into a point and,
afterwards, expanding to infinity singular ring:

pi=at+y? =t —t), (24)

where ty = a/v/1 + h? and velocity of collapse/ex-

pansion v = h/v/1 + h? is always less than the light
one ¢ = 1. Thus,

The Kerr congruence is unstable with respect to
a small perturbation of controlling parameters
of the generating function. This lets one expect
also the instability of the Kerr (Kerr—Newman)
solution of (electro) vacuum Einstein equations,
since the latter is defined, to a considerable de-
gree, by the structure of null congruence of the
above-presented type.

Note in addition that the deformed ring still car-
ries a fixed elementary charge but cannot escape,
nonetheless, being radiated to infinity.

At this point we complete our brief review of
the “old” algebrodynamics on the Minkowski back-
ground by the following remarks. In fact, from a
single initial condition of B differentiability we were
able to develop a self-consistent theory of fields and
particle-like formations possessing a whole set of
unique and physically realistic properties. The only
ad hoc assumption made during the construction
of algebrodynamical theory, in order to ensure its
Lorentz invariance, was a rather artificial restriction
of the coordinate 4C vector space of B algebra onto
the subspace with Minkowski metrical form. On the

z=0,

DThat is, by solutions free of any symmetry, in particular,
nonstatic and nonaxisymmetric.
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other hand, the structure of string-like singularities-
particles arising on M under this procedure turns
to be unstable and, perhaps, diffuses with time. To-
gether, these considerations suggest the necessity of
a more successive analysis of the geometry “hidden”
in the algebraic structure of biquaternion algebra,
and of probable links of its 4C vector space with the
true physical geometry. On this way we immediately
discover a completely novel geometry of (extended)
space—time presented in the next section.

3. BIQUATERNION GEOMETRY AND PHASE
EXTENSION OF THE MINKOWSKI SPACE

Let us return to matrix representation (3) of the
elements Z € B of biquaternion algebra. Restriction
to unitary matrices Z +— U : Ut = U~! xdet U re-
duces the algebra B to that of real Hamilton quater-
nions Q. Remind that Q is one of the two exceptional
associative division algebras, together with com-
plex algebra. Transformations preserving, together
with unitarity, the structure of multiplication in Q
(inner automorphisms) are of the form

U SxUxS™t, §1=g8*%
S e SU(2).

Under these, the diagonal (real) component of a ma-
trix U is invariant whereas the other three {1, z2, x3}
behave as components of a rotating 3-vector (note
that both £ correspond to the same rotation: spinor
structure). So the automorphism group of quaternion
algebra Aut(Q) = SU(2) = SO(3) is 2:1 isomor-
phic to the group of 3D rotations, with the main
invariant

(25)

| = x1+ 23 + 23, (26)

defining Euclidean structure of geometry induced by
the algebra Q. In this sense, from the times of Hamil-
ton, exceptional algebra of real quaternions is
considered as the algebra of physical background
space and, in the algebrodynamical paradigm, pre-
determines its dimensionality and observable Eu-
clidean structure.

We can then apply the same “Hamilton logic” to
the algebra of biquaternions B. Now the elements Z €
B are represented by complex matrices of generic
type (3), and multiplication in B is preserved under
transformations

Z—MxZsxM1 detM=1,
M € SL(2,C).

In full analogy with the real case, the diagonal com-
ponent zp in (3) remains invariant, and the three
others z = {z1, 29, 23} manifest themselves as a 3D
complex vector under complex rotations. Thus, one
has: Aut(B) = SL(2,C) =2 SO(3,C).

(27)
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Some explanations must be presented at this
point. It is well known that the 6D (in reals) group
SL(2,C) is a covering of the Lorentz group realizing
its spinorial representation; the same is true for
the 2 : 1 isomorphic group of 3D complex rotations
SO(3,C). Specifically, Lorentz transformations can
be represented in the form analogous to (27),

X—M«xXxMT, (28)

but act on the subspace Z — X of Hermitean ma-
trices X = X T with determinant representing the
Minkowski metric. It is just this restriction that we
considered in the previous section. Now, however, we
are interested in natural geometry induced by the fu/l
structure of 8D (in reals) vector space Z of B algebra,
in its hypothetical relations to the Minkowski space
and in physical meaning of four additional coordi-
nates. [t should be noted that, surprisingly, this ge-
ometry has not been discovered until now. As we shall
see, corresponding construction is rather transparent
and successive.

We have seen that the structure of B multiplica-
tion is preserved under 3D complex rotations forming
the SO(3,C) group. The main complex invariant of
these transformations, the analog of Euclidean in-
variant (26) of the real algebra Q, is represented by
a holomorphic (quasi)metrical bilinear form

o =2} + 25+ 25 =|z%, (29)

the (squared) “complex length” of a vector z. [t should
be emphasized that all other metrical forms, the Her-
mitean metric among them, that could be canonically
defined on the vector space C* itself (or on its sub-
space C?) are, in fact, meaningless in the framework
of the algebrodynamics since they do not preserve
their structure under B automorphisms.

On the other hand, from complex invariant (29)
one can naturally extract a positive definite (exactly,
non-negative) Finslerian metrical form of the fourth
degree taking the square of complex modulus of the
considered invariant

S? = oo = |z*|z*|*. (30)

As the next step, one can make use of the following
remarkable identity (see, e.g., [43]):

lz|%|z*|? = (z - 2%)? — |iz x z*|? (31)
that can be explicitly verified. Taking it into account,
one can represent the positive-definite invariant (30)
in the form of a Minkowski-like interval [22]:

S?2=T% - |RJ)? >0, (32)

in which the quantities 7" and R defined through
the scalar (-) and vector (x) products of complex 3-
vectors as

T:=z-z", R:=izxz",

(33)
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aquire, respectively, the meaning of temporal and spa-
tial coordinates of some effective 4D space with a
Minkowski-type metric. Note also that such an iden-
tification is quite unformal since under the B auto-
morphisms acting as 3D complex rotations the quan-
tities T, R transform one through the others just
as the temporal and spatial coordinates do under

Lorentz transformations.®)

Thus, the main real invariant of biquater-
nion algebra, being positive definite, induces
nonetheless the structure of causal domain of the
Minkowski space correspondent to the interior of
the light cone (together with its light-like boundary).
In this scheme, the events that are not causally
connected as if do not exist at all (just as this should
be from a successive viewpoint of STR). We come,
therefore, to a paradoxical but much interesting, both
from physical and mathematical viewpoints, concept
of the physical space—time with positive definite
metric.

Consider now the phase part of complex invari-
ant (29). The latter can be represented in the form

(34)

with absolute value S correspondent to the Minkows-
ki interval and the phase « also invariant under 3D
complex rotations (that is, in fact, under Lorentz
transformations). In this connection, the noncom-
pact (corresponding to modulus) part of the initial
invariant is responsible for macrogeometry explicitly
fixed by an observer: remarkably, it turns to be exactly
of a Minkowski type. At the same time, its phase,
compact part determines geometry of the “fiber” and,
perhaps, reveals itself at a microlevel being, in par-
ticular, related to universal wave properties of matter
(see Section 5). In the other respect, invariant a has
the meaning of the phase of proper complex time as
this can be seen from (34 ) and will be discussed below.

o= Sexp'®,

Thus, we accept a novel concept of the back-
ground space—time geometry as of the phase exten-
sion of (a causal part) of the Minkowski space
predetemined by the initial complex-quaternionic
structure, with coordinates bilinear in those of the
primordial and “actually existing” C? space.

Note that in literature dealing with different ver-
sions of complex extensions of space—time (see,
e.g.,[44, 45]) one usually encounters the procedure of
separation of complex coordinates into real “physical”
and imaginary “unphysical” parts (alternative to their
separation into “modulus” and “phase” parts in our
approach). This procedure is, actually, inconsistent,

®1n fact, these transformations have some peculiarities in
comparison with canonical Lorentz transformations, see [22]
for details.
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since both parts are completely equivalent in inter-
nal properties and should equally contribute to the
induced real geometry one constructs.

Nonetheless, the above-mentioned linear separa-
tion of complex coordinates is rather demonstrative.
Specifically, consider a couple of 3D real vectors
{p, q} associated with a complex vector z:

z=p +iq. (35)

In this representation the principal invariant (29)
takes the form

o= (Ip* —lal*) +i(2p - q),

and corresponds to a pair of invariants in which one
easily recognizes the two well-known invariants of
electromagnetic field (with vectors p, q identified
as the field strengths of electric and magnetic field,
respectively). The noticed analogy of complex coor-
dinates and electromagnetic field seems much sug-
gesting and requires thorough analysis.

(36)

Express now through vectors p, q the effective
temporal and spatial coordinates (33):

T=|p*+la® R=2pxq (37)

and note that the temporal coordinate is positive def-
inite (in Section 5 we shall relate this property with
time irreversibility). As to three spatial coordinates,
they form an axial vector so that the choice of sign
corresponds to reference frame of definite chirality.

Finally, let us write down a remarkable rela-
tion [22] that links the module V of the velocity
V =6R/6T of motion of a material point in the
induced Minkowski space with characteristics of
initial complex space C3, namely, with invariant phase
« and the angle 6 between vectors p and q:

1—V?

14+ V2coth?a’ (38)

cos?f =
In a limited case of motion with fundamental velocity
V =c=1 one gets § = /2, so that vectors p, q
are orthogonal to each other and to the direction of
motion V (in analogy with electromagnetic wave).
From (37) one obtains also that in this “light-like”
case the two vectors are equal in modulus, invariant
o turns to zero, and the phase o becomes indefinite.

In the opposite case of a “particle” at rest V=10
one gets § = 0, , so that two different (“para” and
“ortho”) relative orientations of vectors p, q are pos-
sible. This remarkable property might be related to
two admissible projections of the spin vector onto an
abitrary direction in 3-space.
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4. COMPLEX ALGEBRODYNAMICS
AND THE ENSEMBLE OF “DUPLICONS”

According to the first principles of algebrodynam-
ical approach, the true dynamics takes place just in
the biquaternionic “pre-space” C*. In fact, we are
able to explicitly observe only a “shadow” of this pri-
mordial dynamics on the induced (via mapping (33))
real Minkowski-like space with additional phase and
causal structures.

As another ground under construction of complex
algebrodynamics there serves a distinguished role
of the “complex null cone”, a direct analog of the
real Minkowski light cone. Specifically, consider two

points P, P(9) € C* with coordinates Z connected
through algebraic relation of the form

= 2P+ e P+ [ — A7 (39)
=0~ 21"

Then it is easy to demonstrate [23] using the inci-
dence relation 7 = Z£ (comp. with real case (13))
that the twistor field (as well as the principal spinor
field g and the initial biquaternionic field) fakes equal
values in all the points of the complex null line
connecting these points, that is, along an element
of the null cone. In this respect the position and
displacement of such points are correlated. It is
noteworthy that in both sides of null cone equa-
tion (39) there stands one of the two fundamen-
tal invariants of B algebra so that the primordial
complex geometry dynamically reduces to the
geometry of smaller space C* with holomorphic
(quasi)metrical form (29). As we are already aware
of, this gives rise to real effective geometry of the
Minkowski type. Note also that for a fixed value of (the
two equal) invariants equation (39) defines a complex
2-sphere. The latter manifold is SO(3, C)-invariant
and closely related to unitary representations of the
Lorentz group [46].

Finally, in full analogy with the “old” version of
algebrodynamics on M, let us identify particles
with singularities of the biquaternionic and as-
sociated fields, geometrically—with caustics of
generating congruence. In this connection, recall
that generic singularities on M have the structure of
one-dimensional curves—*“strings”. However, on the
complexified C* background singularities manifest
much richer structure.

Let us also emphasize from the beginning that
the dynamical principles of complex algebrodynamics
are completely the same as of its old version on M.
Specifically, we only make use of biquaternionic fields
obeying the B-analyticity conditions or, equivalently,
of twistor fields defining a generating congruence of
complex null rays with zero shear. In particular, all
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the rules of definition of the set of relativistic fields
(Section 2) do not require any modification in the
complex case.

Consider now generating congruences (and, cor-
respondingly, biquaternionic, twistor, and associated
gauge fields) of a special and physically interesting
type. These are congruences with a focal line—a
world line of some virtual point charge “moving”
in complex extension C* of the Minkowski space.?)
Structures like this have been first considered in the
framework of GTR by Newman [29, 47]; further on,
congruences with a focal line will be called New-
man’s congruences.'?)

In this connection, consider a point-like singula-
rity-particle “moving” in complex space C* along a
“trajectory” z, = z,(7), 7 € C, p = 0,1, 2, 3. Points,
where the primordial twistor (spinor) field takes the
same values as in the vicinity of the “particle,” are
defined by null cone equation (39). However, let these
points belong themselves to the considered world line
and represent thus other “particles”. Then null cone
equation (39) acquires the form

L= [z1(0\) — 21(7))? + [22(A) — z2(7)]*  (40)
+ [z3(\) — ZB(T)]2 —[z0(N) — Zo(T)]2 =

and for any 7 has, in general, a great (or even infinite)

number of roots A = A (7) defining an ensemble of

. ) n .
correspondent “particles” sz ) These are arranged in

various points of the same complex world line and
dynamically correlated (“interact”) with the initial
(generating) particle.

Such a set of “copies” of a sole point-like particle
“observing itself” (both in its past and future, see
Section 5) was first considered in our works [23, 24]
and was called therein the ensemble of duplicons.
[t is noteworthy that on real Minkowski background
equation (40) (which on M turns to be an ordinary
retardation equation), in the case when the point
of observation belongs itself to the world line of a
particle, has a unique solution independently of the
form of a trajectory, namely, the trivial solution A = 7.
Thus, the concept of duplicons cannot be realized on
the background of ordinary Minkowski space M.

In [23, 24] we were guided by the old idea of
R. Feynman and J.A. Wheeler!!) and considered each

duplicon in the capacity of an electron model. In-
deed, in full correspondence with Feynman—Wheeler

9Exact definition and specification of such congruences is
presented, say, in [23].

1At present, this approach is intensively developed by New-
man himself with collaborators [48] as well as by Burin-
skii [49].

Their below presented construction, by virtue of the above-
mentioned reason, cannot be realized on real M.
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conjecture, in the arising picture “all of the electrons”
are, essentially, “one and the same electron” in vari-
ous locations on a unique world line. In fact, however,
the arising structure of singularities suggests a more
natural, though exotic, interpretation.

Indeed, let us consider a primordial “generating”
duplicon in the capacity of an “elementary observer”

0.'2) All other duplicons on its null cone (40), though
dynamically correlated with O, are in fact “invisible”
and not perceived by the elementary observer: any
“signal” is absent! It is thus natural to conjecture
that the act of “perception” (actually—of interac-
tion) takes place when only a null complex line (an
element of the complex null cone) connecting O with
some duplicon becomes “material”, that is,—a caus-
tic of the generating congruence.

[t is easy to determine the caustic locus of the
congruence from null cone equation (39). Similar to
the case of general solution (15) of the B-analiticity
equations, in the case of a Newman’s congruence
caustics coincide with the branching points of the
principal spinor field g or, equivalently, of the field of
local time of a duplicon 7(Z).'3) At these points one
observes the amplification of the principal twistor-
biquaternionic field (preserved along the elements of
the complex null cone) that can be regarded as the
process of propagation of a “signal” to (from) the
observer O, see below.

In turn, branching points correspond to multiple
roots of the null cone equation defined by the condi-
tion

1dL ,

L/ = —55 - Za(za()\) - Za(T))

— 20(20() = 20(7)) = 0

(summation over a = 1,2,3 is assumed and prime
denotes differentiation by \). Together with initial
defining relation for duplicons (40), the above con-
dition specifies a disrete set of positions of the
observer (via its local times T =1%)) and of a
pair of duplicons joining at a correspondent in-
stant (defined as one of mupliple roots A = \¥)).
Thus, elementary interaction act can be regarded as
a fusion of some two duplicons (a,b) (with A(a) =
A(b)) considered with respect to the observer O at
some of its positions (with 7 = 7(®)). At such instants

(41)

2To model a real macroscopic observer, instead of a trajectory
of an individual duplicon z,(7), one should introduce some
averaged trajectory simplest of which is represented by a
null complex line and, under its mapping into real Minkowski
space, corresponds to uniform rectilinear motion of an inertial
observer.

"3)This field satisfies the complex eikonal equation [23]. On the
real Minkowski background this is analogous to the field of
the “retarded” time.
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a process of the field amplification occurs along a
null complex line—a caustic—connecting the ob-
server and the two coinciding duplicons. As it was
already mentioned, under its mapping into M this
line corresponds to some rectilinear path of a field
perturbation moving in uniform with velocity V' < ¢.

We are now in a position to naturally distinguish
particles-singularities in the scheme under consid-
eration as matter constituents and interaction
carriers, in full analogy with generally accepted theo-
retical classification. First of them form the ensemble
of identical duplicons and can move along a very
complicated and mutually concordant trajectories,
geometrically—along the focal curve of generating
congruence. As to the second, they always move
along rectilinear line elements of the complex null
cone connecting a pair of “interacting” duplicons. In
this process, the two merging duplicons represent an
entire particle (see below) and stand for an emitter,
whereas the observer—for a detector of propagating
“signal”; the problem of temporal ordering arising in
this connection will be discussed in Section 5.

Thus, we are led to the conclusion that any
elementary object (electron?) may be fixed by an
observer only at some particular instants and repre-
sents itself a pair of pre-elements—duplicons—
emmiting a signal towards the observer when and
only when their positions coincide in (complex)
space. At all the rest time these pre-elements—
duplicons—are separated in space, do not radiate, and,

consequently, can be detected by none observer.'*)

Conjecture about duplicons as halves of the
electron revealing themselves solely at the instants
of pairwise fusion strongly correlates with modern
concept and observations of fractional charge (see,
e.g., the review [50]) and, on the other hand, makes
it possible to offer an alternative explanation for the
wave properties of microobjects, particularly, for the
quantum interference phenomena.

Indeed, let a pair of duplicons be identified as
an electron at an instant of the first fusion, via the
caustic-signal emitted towards an observer. In the
following, these “twins” diverge in space and, in par-
ticular, can pass through different “slots” in an ide-
alized interference experiment. As a result, they can
again reveal themselves only at an instant of the
next fusion accompanied by a new act of emission
of a signal-caustic in the direction of the observer.
Between the two fusions, each of the “twins” acquires
a particular phase lag, namely, of geometrical phase

"n the complex algebrodynamics there exists also another
class of singularities representing themselves as a sort of
“three-element” formations. One can speculate about their
probable relation to the quark content of matter.
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a of the principal complex invariant (34). Since, how-
ever, the complex coordinates of both “twins” at the
instant of fusion should be equal, for the acquired
phase lag one has

Aa=27N, N=0,£1,+2,... (42)

Thus, there exists only a certain set of points at
which a microobject might be once more observed
after some its primary “registration”. This stronly
resembles the well-known procedure of preparation
of a quantum-mechanical state and of the following
Q@M measurement, respectively. However, in the
above presented picture we do not encounter any
sort of the wave—particle dualism, of the de Broglie
wave, etc. Each matter pre-element—duplicon—
manifests itself as a typical point-like corpuscular,
whereas phase relations are of a completely geomet-
rical nature and relate to some internal space of a
“fiber” over M'®). Below we shall once more return
to discuss the interference phenomenon.

5. RANDOM COMPLEX TIME
AND QUANTUM UNCERTAINTY

Essentially, it is meaningless to discuss the prob-
lem of dynamics in complex space before one specifies
the notion of complex time. In fact, we have already
seen that the evolution parameter T € C of an “el-
ementary observer” O, that is, the parameter of the
“world line” z,(7) of a generating point singularity
is now complex-valued. This means that subsequent
position of the observer on its “trajectory” (under
T — T 4 dr)is indefinite by virtue of arbitrariness of
alteration of the phase of parameter 7.

On the one hand, any value of 7 one-to-one corre-
sponds to a certain position of the observer O (and of
associated set of duplicons correlated with O through
the null cone constraint) and, therefore, to a definite
“state of the Universe” with respect to a given ob-
server.

On the other hand, a particular realization of
those or other continuations of the trajectory is am-
biguous being ruled by an unknown law of “walk” of
the evolution parameter 7 across the complex plane,
that is, by the form of a curve 7 = 7(¢) with mono-

tonically increasing real-valued parameter t € R.'6)
In [23, 24] this was called the evolution curve.

911 our scheme, the fiber itself defines the structure of effective
Minkowski base. Such situation is unique and, in paticular,
can find application in the theory of Calabi—Yau manifolds
with a 3C fiber structure.

18)0One can evidently represent this parameter by the length of
the curve.
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Note that only after specification of the form of
evolution curve one can ascertain the order of suc-
cession of events and even distinguish past from fu-
ture. It is just this form that defines the time arrow
and predetermines, in particular, which of the (com-
pletely identical in dynamics) duplicons is “younger”
and which “older” than a certain “elementary ob-
server” Q.

In the framework of neo-Pythagorean ideology of
algebrodynamics, the form of the universal evolution
curve should follow from some general mathematical
considerations and be exceptional with respect to its
internal properties; unfortunately, at present the form
is unknown. Up to now it only seems natural to
expect that this “Time Curve” is extremely compli-
cated and entangled (being, probably, of a fractal-like
nature). Where this is the case, for us the character
of alteration of the evolution parameter on its com-
plex plane would effectively represent itself a random
walk. Moreover, one may conjecture that this walk is
discrete whereas the generating worldline z,,(7) itself
remains complex analytical: these two are completely
independent. Then in the scheme there arises the
time quanta—"*chronon”. We shall see below that
it has to be of order of the Compton size, not of
the Plank one. From different viewpoints the latter
concept has been advocated in a number of works
(see, e.g., [51] and references therein).

[t is noteworthy that despite a probable random
character of the Time Curve it gives rise to mutually
correlated alterations of the locations of different par-
ticles or, more generally,—to global synchroniza-
tion of random processes of various nature. At a
microlevel this may be related to quantum nonlocality
and entanglement, at macrolevel—to universal corre-
lations already observed in the experiments of Shnoll
(see, e.g., the review [52]).

Conjecture about random nature of the Time dy-
namics and resulting randomness of the motion of
microobjects makes it possible to solve also the prob-
lem of concordance between increments 6T,0R. of
the effective space—time coordinates (33) and differ-
ences of their final and initial values AT =T" — T,
AR = R’ — R!'". Indeed, for, say, the time coordinate
one gets

AT =T —T = (p+dp|* — p|?)

+(la+dql* - |a|*) =2(p - dp + q- dq)
+ (dp - dp + dq - dq).

(43)

") Generally, these are not necessarily equal due to bilinearity
of the induced space—time coordinates with respect to the
primary complex “holonomic” coordinates z,,.
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Now under averaging the mixed term dT =
2(p - dp + q - dq) vanishes, and the time interval

0T =dp-dp+dq-dq=AT (44)

at a “physically infinitesimal” scale behaves as a full
differential, an actually holonomic entity. The same is
true for increments of the averaged spatial coordi-
nates )R = AR.

Moreover, property of increment of the time coor-
dinate 67" > 0 be positive definite “in average” leads
immediately to a natural kinematical explanation
of the irreversibility of physical time. Actually, any
“macroscopic” alteration of the particles’ posi-
tions (of the state of a system of particles) in
the primary complex space necessarily results in
an increase of the value of time coordinate of the
effective Minkowski space. Thus, in the algebrody-
namical approach irreversibility of time seems to
be of kinematical and statistical nature, and in the
latter respect time resembles the entropy-like quan-
tity in the orthodox scheme (if the latter is understood
as a probability measure).

To conclude, in the context of initially determinis-
tic “classical” dynamics there arises an unremovable
uncertainty and, effectively, randomness of evolu-
tion of an observable ensemble of micro-objects. This
uncertainty is of a global and universal character
and is related to conjectural stochastic type of al-
teration of the complex time parameter, to complex
and effectively random nature of physical time
itself. It is noteworthy that numerous problems and
perspectives arising under introduction of the notion
of two-dimensional time have been considered by
Sakharov [53];Kechkin and Asadov [45] studied the
quantum mechanics with complex time parameter
and introduced, in this connection, the notion of dif-
ferent alteration regimes of this parameter similar to
the above-introduced notion of “evolution curve.”

Remarkably, in the capacity of rather unspecified
parameter 7 of the generating world line z,(7) one
can (should!) use the principal invariant o of complex
proper time (34), with its modulus S correspond-
ing to ordinary Minkowski proper time, and phase
a responsible for uncertainty of evolution. This is
the only parameter ensuring preservation of both the
primary twistor field and the caustic structure (along
straight null rays of the generating congruence) (see
the proof in [23]). In this sense (despite its accepted
name) complex “proper” time acquires the meaning
of universal global time governing the concordant
dynamics of the Universe.

We are now ready to return back to the analysis
of quantum interference experiment started in the
previous section. Recall that we have undertaken an
attempt to relate the wave properties of matter to the
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conjecture of dimerous electron (formed by two pre-
elements—duplicons—at the instants of their fusion)
and to the geometrical phase (phase of the complex
time «) “attached” at each point of the generating
world line and lagging along the latter. In the simplest
case, assuming linear proportionality of (physically)
infinitesimal increments of the module dS and phase
da of complex time,

do. = const - dS, (45)

and choosing as the scale factor one half of the in-
verse Compton length of electron const = Mc¢/2h
(this corresponds to the above-mentioned assump-
tion about the quanta of complex time —*“chronon”),
one obtains from the fusion condition (42)

Mec AA

(46)
Essentially, the above formula represents condition
for maxima of classical interference in the rela-
tivistic case. According to it, the phase lag for two
“halves”—duplicons under interference are propor-
tional to the path difference, with the Minkowski
interval as invariant measure. On the one hand,
this is in remarkable correspondence with famous
Feynmann representation of the wave function ¥ =
Rexp(iA/h) whose phase is proportional to the
classical action A (for free particle—to the proper
time interval). On the other hand, in nonrelativistic
approximation decomposing the interval dS over the
powers of velocity V/c¢ and taking into account the
integrability of zero power term, one obtains as the
condition of quantum interference the de Broglie

relation
dL h
Al —=N, \Ni=—
/ A ’ Mv’

with integer path difference of two duplicons in frac-
tions of the de Broglie wave length .

(47)

Thus, the phase invariant o seems to be of funda-
mental physical importance being at the same time a
measure of uncertainty of the evolution of microob-
jects and the measure of their wave properties. The
latters have their origin in the peculiarities of pri-
mordial complex geometry and do not appeal to the
paradigm of wave—particle dualism.

To conclude, we have endeavored to demonstrate
the following. Exceptional complex geometry based
on the properties of remarkable algebraic structure
(biquaternions) when introduced into foundations
of physics as the primordial “hidden” geometry
of space—time (instead of the habitual Minkows-
ki geometry) results in a quite novel and unex-
pected picture of the World. As its principal ele-
ments one can distinguish identical pre-elements of
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matter—duplicons—constituents of observable par-
ticles (electrons?) as well as uniformly propagating
interaction carriers (caustics) and random complex
time that predetermines kinematical irreversibility of
physical time at macrolevel. However, aiter 25 years
of development of the algebrodynamical field theory
on ordinary Minkowski background, “new” complex
algebrodynamics is just at the very beginning of its
march. We expect that the properties of biquaternion
algebra and of associated mathematical structures
are rich enough to encode in themselves the most fun-
damental laws of dynamics and geometry of physical
World.
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